DARWINIANA, nueva serie 1(1): 67-75. Efectivamente publicado en PDF el 31 de julio de 2013 ISSN 0011-6793 impresa - ISSN 1850-1699 en línea |
|||||||||
Artículo original ![]() |
|||||||||
BIODIVERSITY OF AGARICOMYCETES BASIDIOMES ASSOCIATED TO SALIX AND POPULUS (SALICACEAE) PLANTATIONS | |||||||||
Gonzalo M. Romano1, Javier A. Calcagno2 & Bernardo E. Lechner1 | |||||||||
1 Laboratorio de Micología, Fitopatología y Liquenología, Departamento de Biodiversidad y Biología Experimental, Programa de Plantas Medicinales y Programa de Hongos que Intervienen en la Degradación Biológica (CONICET), Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Pabellón II, Piso 4, Laboratorio 7, C1428EGA Ciudad Autónoma de Buenos Aires, Argentina; gonza.romano@gmail.com (author for correspondence). 2 Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y de Diagnóstico - Departamento de Ciencias Naturales y Antropológicas, Instituto Superior de Investigaciones, Hidalgo 775, C1405BCK Ciudad Autónoma de Buenos Aires, Argentina. |
|||||||||
Recibido: 22 de febrero de 2013. Aceptado: 3 de julio de 2013. Editor Asociado: Diego Salariato. | |||||||||
Imágenes | |||||||||
|
|||||||||
Resumen | Artículo | Bibliografía | |||||||
Resumen. Romano, G. M.; J. A. Calcagno & B. E. Lechner. 2013. Biodiversidad de basidiomas de Agaricomycetes asociados a plantaciones de Salix y Populus (Salicaceae). Darwiniana, nueva serie 1(1): 67-75. Aunque los cultivos forestales son comunidades artificiales, modifican condiciones ambientales que pueden alterar la diversidad fúngica nativa. Se estudiaron los efectos del manejo forestal de una plantación de sauces (Salix) y álamos (Populus) sobre la biodiversidad de Agaromycetes durante un año en una isla del Delta del Paraná, Argentina. Se midieron el peso seco y el número de basidiomas. Se identificaron 28 especies pertenecientes a los Agaricomycetes: 26 especies de Agaricales, una de Polyporales y una de Russulales. Nuestros resultados sugieren que el manejo forestal de dicha plantación no afecta la abundancia ni la diversidad de basidiomas de Agaricomycetes. Palabras clave. Agaricomycetes; Argentina; detritos leñosos; diversidad fúngica; plantación forestal. Abstract. Romano, G. M.; J. A. Calcagno & B. E. Lechner. 2013. Biodiversity of Agaricomycetes basidiomes associated to Salix and Populus (Salicaceae) plantations. Darwiniana, nueva serie 1(1): 67-75. Although plantations have an artificial origin, they modify environmental conditions that can alter native fungi diversity. The effects of forest management practices on a plantation of willow (Salix) and poplar (Populus) over Agaricomycetes basidiomes biodiversity were studied for one year in an island located in Paraná Delta, Argentina. Dry weight and number of basidiomes were measured. We found 28 species belonging to Agaricomycetes: 26 species of Agaricales, one species of Polyporales and one species of Russulales. Our findings suggest that forest management practices on plantations of willow and poplar do not affect either the abundance or diversity of Agaricomycetes basidiomes. Keywords. Agaricomycetes; Argentina; fungal diversity; plantation; woody debris. INTRODUCTION Agaricomycetes, one of the largest clades of Basidiomycota, sensu Dowell Prosyllabus: LXXVII (2001) includes fungi forming hymenomycetous or gasteroid basidiomes, with basidia 2-8-spored, and parenthesomes perforate or imperforate. It is the least-inclusive clade containing Auriculariales, Sebacinales, Cantharellales, Phallomycetidae and Agaricomycetidae (Hibbett et al., 2007). This group is approximately equivalent to Homobasidiomycetes sensu Hibbett & Thorn (2001) plus Auriculariales and Sebacinales (Hibbett et al., 2007). Agaricomycetes includes mycorrhyzal, saprobes and xylophagous fungi that play key roles as decomposers and mutualists, but they need specific conditions to form and ripen their basidiomes, giving this group a genuine ecological value to assess forests conservation. Plant communities produce microclimates that modify abiotic variables, like temperature and humidity, and add biotic ones, like substrate (e.g. decaying wood, leaves) and mutualist counterpart availability. The plantation consists mainly of Populus nigra, while Salix humboldtiana Willd. is left to grow in the perimeter. It is located in 34°1’27” S and 58°59’9” W and was divided into two zones, both of more than 10000 m2 and more than 30 years old: one has never been managed (“Unmanaged zone”), and the other one was managed for the last time in 2006 (“Managed zone”). The management regime of these plantations consists of the removal of all branches except the youngest distal one of each tree, allowing faster branch regeneration. After every management procedure, the canopy is drastically reduced, and woody residues are left in situ in the ground. RESULTS Comparison between zones No significant differences were found between the number of trees present in both zones (p > 0.05). The mean was 24.7 ± 3.2 per quadrant for the Unmanaged versus 48.7 ± 15.7 for the Managed zone, although the Managed zone was more variable. On the contrary, significant differences were found between DBH of trees present in both zones, with a mean of 24.9 ± 1.2 cm for the Unmanaged while the Managed zone had a mean of 6.6 ± 0.3 cm (p < 0.05). Diversity, richness and species evenness We found a total of 28 species ( ) belonging to Agaricomycetes: 26 species of Agaricales, one species of Polyporales and one species of Russulales. Species more frequently found according to dry weight and number of basidiomes, are shown in and respectively.We observed similar trends for number of basidiomes and dry weight, with higher diversity and richness in the Managed zone, where 21 species of Agaricomycetes were found (16 in Unmanaged). In the Unmanaged zone Pleurotus ostreatus (Jacq.) P. Kumm. was dominant (43% of dry weight), while in the Managed zone was Pluteus aff. cervinus (Schaeff.) P. Kumm., with 51%. According to the number of basidiomes, Resupinatus applicatus (Batsch) Gray was the most frequent species found in the Unmanaged zone (26%), and Lentinus tigrinus (Bull.) Fr. in the Managed zone (17%). We also compared diversity and richness of collected species according to their substrate. Soil mushrooms were rarely found in both zones (). When dry weight was compared, the Managed zone registered higher values of diversity and evenness than the Unmanaged, for both wood and soil inhabitants. However, when number of basidiomes was used, both zones had a similar diversity and evenness for xylophagous fungi, while diversity, richness and evenness of soil fungi were higher in the Managed zone (). DISCUSSION Comparison between zones The lack of differences found between the numbers of trees present in both zones sustains the homogeneity of the plantation forest. Differences found between diameters of trees are probably a consequence of the type of forest management practiced in the region, with trees in the Managed zone having a minor value of DBH than those in the Unmanaged zone. Diversity, richness and species evenness Independently of the values obtained for each zone, species more frequently found have a high plasticity in substrates. Oudemansiella canarii (Jungh.) Höhn. is able to grow in a variety of substrates, such as Piptadenia Benth. (Fabaceae) (Singer & Digilio, 1951), Erythrina crista-galli L. (Fabaceae) (Singer & Digilio, 1951; Sede & Lo-pez, 1999), mango branches (Anacardiaceae) (Pegler, 1977), Salix (Salicaceae) (Wright & Albertó, 2002), and Canarium commune L. (Burseraceae) (Petersen et al., 2008). Moreover, it has a wide distribution as it has been found in Africa (Pegler, 1977), Brazil (Lima et al., 2008), oriental Asia (Petersen et al., 2008) and Argentina; particularly in Tucumán (Singer & Digilio, 1951), Buenos Aires (Singer & Digilio, 1951; Sede & Lopez, 1999) and Misiones (Wright et al., 2008). The production of Pleurotus ostreatus (Jacq.) P. Kumm. has increased in Argentina, particularly in the surroundings of Paraná River, because of the availability of wooden subtrates. Pleurotus ostreatus (Jacq.) P. Kumm. is not specific of any substrate and since its initial description for Argentina in 1993 (Lechner et al., 2002), it is extending its distribution in the region. Pluteus aff. cervinus (Schaeff.) P. Kumm. was not frequently found, but the magnitude of dry weight of its basidiomes was over the mean, allowing P. aff. cervinus (Schaeff.) P. Kumm. to stand out with 12.4%. Lentinus tigrinus (Bull.) Fr. is a gilled species that belongs to Polyporales, and it is only cited growing on Salix (Salicaceae) (Lechner & Albertó, 2007), one of the two predominant trees in the studied region. ACKNOWLEDGEMENTS The authors thank University of Buenos Aires and CONICET (Argentina) for financial assistance. Also family Brobjerg for permitting this study in the island of Paraná Delta. BIBLIOGRAPHY Abeucci, C. & P. Sarafian. 2006. Cuenca del Delta del Paraná. Secretaría de Obras Públicas, Subsecretaría de Recursos Hídricos 37: 1-9. Bava, J. & P. López Bernal. 2006. Cortas de selección en grupo en bosques de lenga de Tierra del Fuego. Quebracho 13: 77-86. Boddy, L.; J. Frankland & P. van West. 2008. Ecology of saprotrophic Basidiomycetes. British Mycological Society Symposia Series. The United Kingdom: Elsevier Ltd. Borodowski, E. & R. Suárez. 2013. Forestación: El cultivo de álamos y sauces: su historia en el Delta del Paraná. Nota técnica para Agroparlamento.com. http://www.agroparlamento.com/agroparlamento/notas.asp?n=1408. [Consultado: 17/05/2013]. Borus, J. 2010. Sistema hidrológico del Bajo Delta. Simposio Científico Académico Delta del Paraná: Historia, presente y futuro. San Fernando, Buenos Aires, Argentina. Daniel, W. 1978. Applied nonparametric statistics. Boston: Houghton Mifflin. Doweld, A. 2001. Prosyllabus tracheophytorum: Tentamen systematis plantarum vascularium (Tracheophyta). Moscow: Geos. Egli, S.; M. Peter, C. Buser, W. Stahel & F. Ayer. 2006. Mushroom picking does not impair future harvests – results of a long-term study in Switzerland. Biodiversity Conservation 129: 271-276. Garibay-Orijel, R.; M. Martínez-Ramos & J. Cifuentes. 2009. Disponibilidad de esporomas de hongos comestibles en los bosques de pino-encino de Ixtlán de Juárez, Oaxaca. Revista Mexicana de Biodiversidad 80: 521-534. Hibbett, D.; M. Binder, J. Bischoff, M. Blackwell, P. Cannon, O. Eriksson, S. Hunhndorf, T. James, P. Kirk, R. Lücking, H. Thorsten Lumbsch, F. Lutzoni, P. Matheny, D. McLaughlin, M. Powell, S. Redhead, C. Schoch, J. Spatafora, J. Stalpers, R. Vilgalys, M. Aime, A. Aptroot, R. Bauer, D. Begerow, G. Benny, L. Castlebury, P. Crous, Y. Dai, W. Gams, D. Geiser, G. Griffith, C. Gueidan, D. Hawksworth, G. Hestmark, K. Hosaka, R. Humber, K. Hyde, J. Ironside, U. Kõljalg, C. Kurtzman, K. Larsson, R. Lichtwardt, J. Longcore, J. Miadlikowska, A. Miller, J. Moncalvo, S. Mozley-Standridge, F. Oberwinkler, E. Parmasto, V. Reeb, J. Rogers, C. Roux, L. Ryvarden, J. Sampaio, A. Schüßler, J. Sugiyama, R. Thorn, L. Tibell, W. Untereiner, C. Walker, Z. Wang, A. Weir, M. Weiss, M. White, K. Winka, Y. Yao & N. Zhang. 2007. A higher-level phylogenetic classification of the Fungi. Mycological Research 111: 509-547. Hibbett, D. & R. Thorn. 2001. Basidiomycota: Homobasidiomycetes, en D. J. McLaughlin, E. G. McLaughlin & P.A. Lemke (eds.), The Mycota VII Part B, Systematics and Evolution, pp. 121-168. Berlin: Springer-Verlag. Lechner, B. & E. Albertó. 2007. Optimal conditions for the fruit body production of natural occurring strains of Lentinus tigrinus. Bioresource Technology 98: 1866-1869. Lechner, B.; R. Petersen, M. Rajchenberg & E. Albertó. 2002. Presence of Pleurotus ostreatus in Patagonia, Argentina. Revista Iberoamericana de Micología 19: 111-114. Lima, M.; T. Asai & M. Capelari. 2008. Armillaria paulensis: a new South American species. Mycological Research 112: 1122-1128. Lindner Czederpiltz, D.; G. Stanosz & H. Burdsall. 1999. Forest management and the diversity of Wood-inhabiting Fungi. McIlvainea, Journal of American Amateur Mycology 14(1): 34-46. Maas Geesteranus, R. 1992. Mycenas of the Northern Hemisphere II. Conspectus of the Mycenas of the Northern Hemisphere. Amsterdam: Verhandelingen der Koninklijke Nederlandse Akademie van Wetenschappen. Oria-de-Rueda, J.; M. Hernández-Rodríguez, P. Martín-Pinto, V. Pando & J. Olaizola. 2010. Could artificial reforestations provide as much production and diversity of fungal species as natural forest stands in marginal Mediterranean areas? Forest Ecology and Management 260: 171-180. Pegler, D. 1977. A Preliminary Agaric Flora of East Africa, Kew Bulletin Additional. Series 6. Londres: Her Majesty´s Stationery Office. Petersen, R.; D. Desjardin & D. Krüger. 2008. Three type specimens designated in Oudemansiella. Fungal Diversity 32: 81-96. Pilz, D.; R. Molina & L. Liegel. 1998. Biological productivity of chanterelle mushrooms in and near the Olympic Peninsula Biosphere Reserve, en L.H. Liegel (ed.), The biological, socioeconomic, and managerial aspects of chanterelle mushroom harvesting: The Olympic Peninsula, Washington State, United States, pp. 8-13. Stockholm: Royal Swedish Academy of Science. Rajala, T.; M. Peltoniemi, T. Pennanen & R. Mäkipää. 2010. Relationship between wood-inhabiting fungi determined by molecular analysis (denaturing gradient gel electrophoresis) and quality of decaying logs. Canadian Journal of Forest Research 40: 2384-2397. Ritz, K. & I. Young. 2004. Interactions between soil structure and fungi. Mycologist 18: 52-59. Robledo, G. & D. Renison. 2009. Wood-decaying polypores in the mountains of central Argentina in relation to Polylepis forest structure and altitude. Fungal Ecology 3: 178-184. Sede, S. & S. Lopez. 1999. Xylophagous fungi of urban trees in Buenos Aires City. Mycologist 13: 173-175. Shannon, C. & W. Weaver. 1949. The Mathematical Theory of Communication. Urbana, Illinois: The University of Illinois Press. Singer, R. & A. Digilio. 1951. Pródromo de la flora Agaricina Argentina. Lilloa 25: 6-461. Sokal, R. & F. Rohlf. 1995. Biometry: the principles and practice of statistics in biological research, 3a edición. New York: W. H. Freeman and Co. Torres, J. & G. González. 2005. Wood Decomposition of Cyrilla racemiflora (Cyrillaceae) in Puerto Rican Dry and Wet Forests: A 13-year Case Study. Biotropica 37: 452-456. Wright, J.; B. Lechner & O. Popoff. 2008. Atlas pictórico de los hongos del Parque Nacional Iguazú. Buenos Aires: L.O.L.A. Wright, J. & E. Albertó. 2002. Guía de los hongos de la región pampeana: I. Hongos con laminillas. Buenos Aires: L.O.L.A. |
|||||||||
![]() BIODIVERSITY OF AGARICOMYCETES BASIDIOMES ASSOCIATED TO SALIX AND POPULUS (SALICACEAE) PLANTATIONS Gonzalo M. Romano, Javier A. Calcagno & Bernardo E. Lechner bajo Licencia Creative Commons Atribución-NoComercial 2.5 Argentina. Basada en una obra en Revista Darwiniana, nueva serie. Argentina |
|||||||||
Programación y Administración: Ana Lorenzo. Técnica Principal IBODA-CONICET |