Revisando la clasificación infraespecífica de Xerodraba patagonica (Brassicaceae) bajo diferentes fuentes de evidencia

Autores/as

DOI:

https://doi.org/10.14522/darwiniana.2023.112.1149

Palabras clave:

Cruciferae, límites de especies, Patagonia, Tribu Eudemeae

Resumen

Xerodraba (5 spp.) es un género de Brassicaceae restringido a los Andes del Sur y la Patagonia, del cual X. patagonica incluye la subsp. patagonica y la subsp. pycnophylloides. Esta última ha sido reducida recientemente de especie a subespecie por su similitud morfológica con la primera. Sin embargo, para una clasificación taxonómica adecuada de estos nombres (dos especies, una especie con dos subespecies, o una especie sin subespecies), se necesitan estudios adicionales, realizando análisis de diferentes tipos de datos. Aquí, aportamos evidencias para una nueva clasificación de estos nombres contrastando los resultados obtenidos de diferentes análisis filogenéticos, de nicho ecológico y morfológicos. Para ello, analizamos árboles de genes y especies utilizando datos de nrITS y plástidos, comparamos el nicho climático y el rango geográfico de ambas subespecies, y analizamos la variación morfológica asociada a estos nombres. Basándonos en los resultados obtenidos, decidimos sinonimizar a la subsp. pycnophylloides con X. patagonica.

Citas

Agapow, P. M.; O. R. Bininda-Emonds, K. A. Crandall, J. L. Gittleman, G. M. Mace, J. C. Marshall & A. Purvis. 2004. The impact of species concept on biodiversity studies. The Quarterly Review of Biology 79(2): 161-179. DOI: https://doi.org/10.1086/383542

Al-Shehbaz, I. A. 2012. Eudemeae. In: M. A. Anton & F. O. Zuloaga (eds), Brassicaceae, Flora Argentina 8, pp. 135-150. Buenos Aires: Editorial Sigma.

Al-Shehbaz, I. A.; D. L. Salariato, A. Cano & F. O. Zuloaga. 2023. A revised generic delimitation of the South American-endemic tribe Eudemeae (Brassicaceae). Annals of the Missouri Botanical Garden. 108: 250-287. DOI: https://doi.org/10.3417/2023811

Bivand, R.; E. Pebesma & V. Gomez-Rubio. 2013. Applied spatial data analysis with R (2nd ed). New York: Springer. DOI: https://doi.org/10.1007/978-1-4614-7618-4

Bivand, R. & N. Lewin-Koh. 2022. maptools: Tools for Handling Spatial Objects. R package version 1.1-6. https://CRAN.R-project.org/package=maptools

Boelcke, O. & M. C. Romanczuk. 1984. Cruciferae. In: M.N. Correa (ed), Flora Patagonica, Colecc. Ci. Inst. Nac. Tecnol. Agropecu. 4(a): 373-544. Buenos Aires: Instituto Nacional de Tecnología Agropecuaria.

Breiman, L. 2001. Random forests. Machine learning 45: 5-32. DOI: https://doi.org/10.1023/A:1010933404324

Breiner, F. T.; A. Guisan, A. Bergamini & M. P. Nobis. 2015. Overcoming limitations of modelling rare species by using ensembles of small models. Methods in Ecology and Evolution 6: 1210-1218. DOI: https://doi.org/10.1111/2041-210X.12403

Breiner, F. T.; M. P. Nobis, A. Bergamini & A. Guisan. 2018. Optimizing ensembles of small models for predicting the distribution of species with few occurrences. Methods in Ecology and Evolution 9: 802-808. DOI: https://doi.org/10.1111/2041-210X.12957

Broennimann, O.; M. C. Fitzpatrick, P. B. Pearman, B. Petitpierre, L. Pellissier, N. G. Yoccoz, W. Thuiller, M. Fortin, C. Randin, N. E. Zimmermann, C. H. Graham & Guisan A. 2012. Measuring ecological niche overlap from occurrence and spatial environmental data. Global Ecology and Biogeography 21: 481-497. DOI: https://doi.org/10.1111/j.1466-8238.2011.00698.x

Broennimann, O.; V. Di Cola & A. Guisan. 2023. ecospat: Spatial Ecology Miscellaneous Methods. R package version 3.5. https://CRAN.R-project.org/package=ecospat

Calenge, C. 2006. The package adehabitat for the R software: a tool for the analysis of space and habitat use by animals. Ecological modelling 197: 516-519. DOI: https://doi.org/10.1016/j.ecolmodel.2006.03.017

Chartier, M. P.; C. M. Rostagno & L. S. Videla. 2013. Selective erosion of clay, organic carbon and total nitrogen in grazed semiarid rangelands of northeastern Patagonia, Argentina. Journal of Arid Environments 88: 43-49. DOI: https://doi.org/10.1016/j.jaridenv.2012.08.011

Darriba, D.; G. L. Taboada, R. Doallo & D. Posada. 2012. jModelTest2: more models, new heuristics and parallel computing. Nature Methods 9: 772-772. DOI: https://doi.org/10.1038/nmeth.2109

Dauby, G. 2020. ConR: Computation of Parameters Used in Preliminary Assessment of Conservation Status. R package version 1.3.0. https://CRAN.R-project.org/package=ConR

De Queiroz, K. 1998. The general lineage concept of species, species criteria, and the process of speciation and terminological recommendations. In: D. J. Howard & H. S. Berlocher (eds), Endless Forms: Species and Speciation, pp. 57-75. Oxford: Oxford University Press.

De Queiroz, K. 1999. The general lineage concept of species and the defining properties of the species. In: R. Wilson (ed.), Species: new interdisciplinary essays, pp. 49-89. Cambridge, MA: MIT Press.

De Queiroz, K. 2007. Species concepts and species delimitation. Systematic Biology 56(6): 879-886. DOI: https://doi.org/10.1080/10635150701701083

Di Cola, V.; O. Broennimann, B. Petitpierre, F. T. Breiner, M. d’Amen, C. Randin, R. Engler, J. Pottier, D. Pio, A. Dubuis, L. Pellissier, R. G. Mateo, W. Hordijk, N. Salamin & A. Guisan. 2017. ecospat: an R package to support spatial analyses and modeling of species niches and distributions. Ecography 40(6): 774-787. DOI: https://doi.org/10.1111/ecog.02671

Dray, S. & A. Dufour. 2007. The ade4 Package: Implementing the Duality Diagram for Ecologists. Journal of Statistical Software 22(4): 1-20. DOI: https://doi.org/10.18637/jss.v022.i04

Drummond, A. J.; M. A. Suchard, D. Xie & A. Rambaut. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Molecular Biology and Evolution 29: 1969-1973. DOI: https://doi.org/10.1093/molbev/mss075

Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32: 1792-1797. DOI: https://doi.org/10.1093/nar/gkh340

Elith, J.; S. J. Phillips, T. Hastie, M. Dudík, Y. E. Chee & C. J. Yates. 2011. A statistical explanation of MaxEnt for ecologists. Diversity and Distributions 17(1): 43-57. DOI: https://doi.org/10.1111/j.1472-4642.2010.00725.x

Ferrero, M. A., Giussani, L. M., & Vega, A. S. (2020). Distribution models and morphometric analyses as additional tools for the study of diversification in Deyeuxia velutina, an Andean grass species. Darwiniana, nueva serie 8: 509-524. DOI: https://doi.org/10.14522/darwiniana.2020.82.894

Funk, F. A.; G. Peter, C. V. Leder, A. Loydi, l. A. Kröpf & R. A. Distel. 2018. The impact of livestock grazing on the spatial pattern of vegetation in north-eastern Patagonia, Argentina. Plant Ecology & Diversity 11: 219-227. DOI: https://doi.org/10.1080/17550874.2018.1473519

Gippoliti, S. & G. Amori. 2007. The problem of subspecies and biased taxonomy in conservation lists: the case of mammals. Folia Zoologica 56: 113-117.

Guisan, A.; B. Petitpierre, O. Broennimann, C. Daehler & C. Kueffer. 2014. Unifying niche shift studies: insights from biological invasions. Trends in Ecology & Evolution 29: 260-269. DOI: https://doi.org/10.1016/j.tree.2014.02.009

Grummer, J. A., Jr.; R. W. Bryson & T. W. Reeder. 2014. Species delimitation using Bayes factors: simulations and application to the Sceloporus scalaris species group (Squamata: Phrynosomatidae). Systematic Biology 63(2): 119-133. DOI: https://doi.org/10.1093/sysbio/syt069

Hall, T. A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.

Heled, J. & A. J. Drummond. 2010. Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution 27: 570-580. DOI: https://doi.org/10.1093/molbev/msp274

Henderson, A. J. 2004. A multivariate analysis of Hyospathe (Palmae). American Journal of Botany 91: 953-965. DOI: https://doi.org/10.3732/ajb.91.6.953

Henderson, A. J. 2005. A multivariate study of Calyptrogyne (Palmae). Systematic Botany 30: 60-83. DOI: https://doi.org/10.1600/0363644053661913

Hijmans, R. J. 2023. raster: Geographic Data Analysis and Modeling. R package version 3.6-20. https://CRAN.R-project.org/package=raster

Huson, D. H. & D. Bryant. 2006. Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution 23: 254-267. DOI: https://doi.org/10.1093/molbev/msj030

Huson, D. H.; T. Dezulian, T. Klopper & M. A. Steel. 2004. Phylogenetic super-networks from partial trees. IEEE/ACM Transactions on Computational Biology and Bioinformatics 1: 151-158.

Isaac, N. J.; J. Mallet & G. M. Mace. 2004. Taxonomic inflation: its influence on macroecology and conservation. Trends in Ecology & Evolution 19(9): 464-469. https://www.iucnredlist.org/resources/categories-and-criteria

IUCN Species Survival Commission. 2012. IUCN Red List categories and criteria, version 3.1. Gland: IUCN. https://portals.iucn.org/library/sites/library/files/documents/RL-2001-001.pdf

IUCN Standards and Petitions Committee. 2022. Guidelines for Using the IUCN Red List Categories and Criteria, version 15.1. Prepared by the Standards and Petitions Committee. https://www.iucnredlist.org/resources/redlistguidelines

Karger, D. N.; O. Conrad, J. Böhner, T. Kawohl, H. Kreft, R. W. Soria-Auza, N. E. Zimmermann, H. P. Linder, et al. 2017. Climatologies at high resolution for the earth’s land surface areas. Scientific data 4: 170122. DOI: https://doi.org/10.1038/sdata.2017.122

Karger, D. N.; O. Conrad, J. Böhner, T. Kawohl, H. Kreft, R. W. Soria-Auza, N. E. Zimmermann, H. P. Linder, et al. 2021. Climatologies at high resolution for the earth’s land surface areas. EnviDat. DOI: https://doi.org/10.16904/envidat.228.v2.1

Kass, R. E. & A. E. Raftery. 1995. Bayes factors. Journal of the American Statistical Association 90: 773-795.

Kuhn, M. 2022. caret: Classification and Regression Training. R package version 6.0-93. https://CRAN.R-project.org/package=caret

Lartillot, N. & H. Philippe. 2006. Computing Bayes factors using thermodynamic integration. Systematic Biology 55: 195-207. DOI: https://doi.org/10.1080/10635150500433722

Liaw, A. & Wiener M. 2002. Classification and Regression by randomForest. R News 2(3): 18-22.

Liu, C.; M. White & G. Newell. 2013. Selecting thresholds for the prediction of species occurrence with presence-only data. Journal of Biogeography 40(4): 778-789. DOI: https://doi.org/10.1111/jbi.12058

Manton, I. 1932. Introduction to the general cytology of the Cruciferae. Annals of Botany 46(183): 509-556. https://www.jstor.org/stable/43237630

Mazzonia, E. & M. Vazquez. 2009. Desertification in Patagonia. In: E. M. Latrubesse (ed.), Developments in Earth Surface Processes, pp. 351-377. Amsterdam: Elsevier. DOI: https://doi.org/10.1016/S0928-2025(08)10017-7

Meikle, R. D. 1957. What is the subspecies? Taxon 6: 102-105. DOI: https://doi.org/10.2307/1217753

Moritz, C. 1994. Defining “evolutionarily significant units” for conservation. Trends in Ecology & Evolution 9: 373-375. DOI: https://doi.org/10.1016/0169-5347(94)90057-4

Nic Lughadha, E.; B. E. Walker, C. Canteiro, H. Chadburn, A. P. Davis, S. Hargreaves, E. J. Lucas, A. Schuiteman, E. Williams, S. P. Bachman, D. Baines, A. Barker, A. P. Budden, J. Carretero, J. J. Clarkson, A. Roberts & M. C. Rivers. 2018. The use and misuse of herbarium specimens in evaluating plant extinction risks. Philosophical transactions of the Royal Society B 374(1763): 20170402. DOI: https://doi.org/10.1098/rstb.2017.0402

Nicola, M. V.; L. A. Johnson & R. Pozner. 2014. Geographic variation among closely related, highly variable species with a wide distribution range: the South Andean-Patagonian Nassauvia subgenus Strongyloma (Asteraceae, Nassauvieae). Systematic Botany 39: 331-348. DOI: https://doi.org/10.1600/036364414X677982

Nixon, K.C. & Q. D. Wheeler. 1990. An amplification of the phylogenetic species concept. Cladistics 6: 211-223. DOI: https://doi.org/10.1111/j.1096-0031.1990.tb00541.x

Pebesma, E. J. & R. S. Bivand. 2005. Classes and methods for spatial data in R. R News 5(2). https://cran.rproject.org/doc/Rnews

Quantum GIS Development Team. 2022. QGIS geographic information system. Open Source Geospatial Foundation. https://qgis.org

R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

Reydon, T. A. & W. Kunz. 2021. Classification below the species level: when are infraspecific groups biologically meaningful? Biological Journal of the Linnean Society 134(1): 246-260. DOI: https://doi.org/10.1093/biolinnean/blab067

Ronquist, F.; M. Teslenko, P. van der Mark, D. L. Ayres, A. Darling, S. Höhna, B. Larget, L. Liu, M. A. Suchard & J. P. Huelsenbeck. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Systematic Biology 61: 539-542. DOI: https://doi.org/10.1093/sysbio/sys029

Salariato, D. L.; F. O Zuloaga & I. A. Al-Shehbaz. 2012. Morphometric studies and taxonomic delimitation in Menonvillea scapigera and related species (Cremolobeae: Brassicaceae). Plant Systematics and Evolution 298: 1961-1976. DOI: https://doi.org/10.1007/s00606-012-0694-5

Salariato, D. L.; F. O. Zuloaga & I. A. Al-Shehbaz. 2015a. A taxonomic revision of the genus Xerodraba (Eudemeae, Brassicaceae). Phytotaxa 207: 39-67. DOI: https://doi.org/10.11646/phytotaxa.207.1.2

Salariato, D.L.; F.O. Zuloaga, A. Cano & I. A. Al-Shehbaz. 2015b. Molecular phylogenetics of tribe Eudemeae (Brassicaceae) and implications for its morphology and distribution. Molecular phylogenetics and Evolution 82: 43-59. DOI: https://doi.org/10.1016/j.ympev.2014.09.030

Salariato, D. L.; A. Cano, F. O. Zuloaga & I. A. Al-Shehbaz. 2020. Molecular phylogeny of Cremolobus (Brassicaceae) supports the recognition of the new genus Yunkia and demonstrates the high habitat diversity of tribe Cremolobeae. Systematics and Biodiversity 18: 295-314. DOI: https://doi.org/10.1080/14772000.2020.1739777

Salariato, D. L.; H. Trinidad, A. Cano, F. O. Zuloaga & I. A. Al-Shehbaz. 2022. Interplay between conservatism and divergence in climatic niche evolution of Brassicaceae tribe Eudemeae shaped their distribution across the different environments of the Andes. Botanical Journal of the Linnean Society 200(3): 314-343. DOI: https://doi.org/10.1093/botlinnean/boac031

Schoener, T. W. 1968. Anolis lizards of Bimini: Resource partitioning in a complex fauna. Ecology 49: 704-726.

Simpson, G. G. 1951. The species concept. Evolution 5: 285-298. DOI: https://doi.org/10.1111/j.1558-5646.1951.tb02788.x

Skottsberg, C. J. F. 1916. Botanische Ergebnisse der Schwedischen Expedition Nach Patagonie und dem Feuerlande 1907-1909, V. Die Vegetationsverhältnisse Längs der Cordillera de los Andes S. von 41º S Br. Ein Beitrag Zur Kenntnis der Vegetation on Chiloé, West- Patagonien, dem Andinen Patagonien und Feurland. Kungliga Svenska vetenskapsakademiens handlingar 56(5): 1-366.

Thuiller, W.; D. Georges, M. Gueguen, R. Engler & F. Breiner. 2021. biomod2: Ensemble Platform for Species Distribution Modeling. R package version 3.5.1. https://CRAN.R-project.org/package=biomod2

Warren, D. L.; R. E. Glor & M. Turelli. 2008. Environmental niche equivalency versus conservatism: quantitative approaches to niche evolution. Evolution 62: 2868-2883. DOI: https://doi.org/10.1111/j.1558-5646.2008.00482.x

Xie, W.; P. O. Lewis, Y. Fan, L. Kuo, & M. H. Chen. 2011. Improving marginal likelihood estimation for Bayesian phylogenetic model selection. Systematic Biology 60: 150-160. DOI: https://doi.org/10.1093/sysbio/syq085

Xerodraba

Descargas

Publicado

21-12-2023

Cómo citar

Salariato, D. L., & Al-Shehbaz, I. A. (2023). Revisando la clasificación infraespecífica de Xerodraba patagonica (Brassicaceae) bajo diferentes fuentes de evidencia. Darwiniana, Nueva Serie, 11(2), 521–540. https://doi.org/10.14522/darwiniana.2023.112.1149

Número

Sección

Sistemática y Taxonomía de Plantas