Assessing fungal endophyte diversity: a comparative study of three automated metabarcoding pipelines
DOI:
https://doi.org/10.14522/darwiniana.2023.112.1127Keywords:
AMPtk, environmental DNA, fungal endophytes, Nothofagus forests, PIPITSAbstract
High-throughput sequencing approaches have become frequent in the study of endophyte communities allowing the cumulative description of fungal diversity in the last decade. However, they brought new challenges to researchers in terms of programming and developing of informatics tools. Currently, there is no consensus concerning the appropriate bioinformatics to process such sequence data. The aim of this study was to compare the performance of three pipelines of two cost-free toolkits designed to be friendly to non-programmer users, and specifically developed for fungal data: AMPtk and PIPITS. The sapwood-inhabiting fungal assemblages of two Nothofagus species from the Patagonian Forests were assessed through metabarcoding of the internal transcribed spacer (ITS) and compared with an extant sequence dataset obtained from culture prospection in the same study sites and trees. The AMPtk toolkit has performed better concerning community description in terms of precision of taxa clustering, mainly due to the DADA2 algorithm; PIPITS evidenced a higher sensitivity in detecting taxa known to be present, hence it is potentially useful for future specific taxa detection surveys. Because of a current lack of information of the reference databases, both bioinformatic toolkits performed poorly as to taxonomy assignment. It is imperative to continue studying these ecosystems to, concomitantly, improve databases and the explanatory potential of the new technologies.
References
Aird, D.; M. G. Ross, W.-S. Chen, M. Danielsson, T. Fennell, C. Russ, D. B. Jaffe, C. Nusbaum & A. Gnirke. 2011. Analyzing and Minimizing PCR Amplification Bias in Illumina Sequencing Libraries. Genome Biology 12 (2): R18. DOI: https://doi.org/10.1186/gb-2011-12-2-r18
Altschul, S.; T. L. Madden, A. A. Schäffer, J. Zhang, Z. Zhang, W. Miller & D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A New Generation of Protein Database Search Programs. Nucleic Acids Research 25 (17): 3389-3402. DOI: https://doi.org/10.1093/nar/25.17.3389
Anslan, S.; R. H. Nilsson, C. Wurzbacher, P. Baldrian, L. Tedersoo & M. Bahram. 2018. Great Differences in Performance and Outcome of High-Throughput Sequencing Data Analysis Platforms for Fungal Metabarcoding. MycoKeys 39: 29-40. DOI: https://doi.org/10.3897/mycokeys.39.28109
Baldrian, P. 2016. Forest Microbiome: Diversity, Complexity and Dynamics. FEMS Microbiology Reviews 41 (2): 109-30. DOI: https://doi.org/10.1093/femsre/fuw040
Baldrian, P.; T. Větrovský, C. Lepinay & P. Kohout. 2021. High-Throughput Sequencing View on the Magnitude of Global Fungal Diversity. Fungal Diversity 114: 539-547. DOI: https://doi.org/10.1007/s13225-021-00472-y
Bengtsson-Palme, J.; M. Ryberg, M. Hartmann, S. Branco, Z. Wang, A. Godhe, P. De Wit et al. 2013. Improved Software Detection and Extraction of ITS1 and ITS2 from Ribosomal ITS Sequences of Fungi and Other Eukaryotes for Analysis of Environmental Sequencing Data. Methods in Ecology and Evolution 4 (10): 914-919. DOI: https://doi.org/10.1111/2041-210X.12073
Brown, S. P.; A. M. Veach, A. R. Rigdon-Huss, K. Grond, S. K. Lickteig, K. Lothamer, A. K. Oliver & A. Jumpponen. 2015. Scraping the Bottom of the Barrel: Are Rare High Throughput Sequences Artifacts? Fungal Ecology 13: 221-225. DOI: https://doi.org/10.1016/j.funeco.2014.08.006
Callahan, B. J.; P. J. McMurdie, M. J. Rosen, A. W. Han, A. J. A. Johnson & S. P. Holmes. 2016. DADA2: High-Resolution Sample Inference from Illumina Amplicon Data. Nature Methods 13 (7): 581-83. DOI: https://doi.org/10.1038/nmeth.3869
Callahan, B. J.; P. J. McMurdie & S. P Holmes. 2017. Exact Sequence Variants Should Replace Operational Taxonomic Units in Marker-Gene Data Analysis. The ISME Journal 11 (12): 2639-2643. DOI: https://doi.org/10.1038/ismej.2017.119
Costello, M. J.; R. M. May & N. E. Stork. 2013. Can We Name Earth’s Species Before They Go Extinct? Science 339 (6118): 413-416. DOI: https://doi.org/10.1126/science.1230318
Dumolin, S.; B. Demesure & R. J. Petit. 1995. Inheritance of Chloroplast and Mitochondrial Genomes in Pedunculate Oak Investigated with an Efficient PCR Method. Theoretical and Applied Genetics 91 (8): 1253-1256. DOI: https://doi.org/10.1007/BF00220937
Edgar, R. C. 2010. Search and Clustering Orders of Magnitude Faster than BLAST. Bioinformatics 26 (19): 2460-2461. DOI: https://doi.org/10.1093/bioinformatics/btq461
Edgar, R. C. 2013. UPARSE: Highly Accurate OTU Sequences from Microbial Amplicon Reads. Nature Methods 10 (10): 996-998. DOI: https://doi.org/10.1038/nmeth.2604
Edgar, R. C. 2016. SINTAX: A Simple Non-Bayesian Taxonomy Classifier for 16S and ITS Sequences. BioRxiv, 074161. DOI: https://doi.org/https://doi.org/10.1101/074161
Edgar, R. C. & H. Flyvbjerg. 2015. Error Filtering, Pair Assembly and Error Correction for next-Generation Sequencing Reads. Bioinformatics 31 (21): 3476-3482. DOI: https://doi.org/10.1093/bioinformatics/btv401
Frøslev, T. G.; R. Kjøller, H. H. Bruun, R. Ejrnæs, A. K. Brunbjerg, C. Pietroni & A. J. Hansen. 2017. Algorithm for Post-Clustering Curation of DNA Amplicon Data Yields Reliable Biodiversity Estimates. Nature Communications 8 (1): 1188. DOI: https://doi.org/10.1038/s41467-017-01312-x
Gardes, M. & T. D. Bruns. 1993. ITS Primers with Enhanced Specificity for Basidiomycetes - Application to the Identification of Mycorrhizae and Rusts. Molecular Ecology 2 (2): 113-118. DOI: https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
Gdanetz, K.; G. M. N. Benucci, N. Vande Pol & G. Bonito. 2017. CONSTAX: A Tool for Improved Taxonomic Resolution of Environmental Fungal ITS Sequences. BMC Bioinformatics 18 (1): 538. DOI: https://doi.org/10.1186/s12859-017-1952-x
Gordon, A. & G. J. Hannon. 2010. Fastx-Toolkit. FASTQ/A Short-Reads Preprocessing Tools (Unpublished) Http://Hannonlab. Cshl. Edu/Fastx_toolkit.
Gweon, H. S.; A. Oliver, J. Taylor, T. Booth, M. Gibbs, D. S. Read, R. I. Griffiths & K. Schonrogge. 2015. PIPITS: An Automated Pipeline for Analyses of Fungal Internal Transcribed Spacer Sequences from the Llumina Sequencing Platform. Methods in Ecology and Evolution 6 (8): 973-980. DOI: https://doi.org/10.1111/2041-210X.12399
Halwachs, B.; N. Madhusudhan, R. Krause, R. H. Nilsson, C. Moissl-Eichinger, C. Högenauer, G. G. Thallinger & G. Gorkiewicz. 2017. Critical Issues in Mycobiota Analysis. Frontiers in Microbiology 8: 1-12. DOI: https://doi.org/10.3389/fmicb.2017.00180
Heine, P.; J. Hausen, R. Ottermanns & M. Roß-Nickoll. 2021. Comparing EDNA Metabarcoding with Morphological Analyses: Fungal Species Richness and Community Composition of Differently Managed Stages along a Forest Conversion of Norway Spruce towards European Beech in Germany. Forest Ecology and Management 496: 119429. DOI: https://doi.org/10.1016/j.foreco.2021.119429
Jalili, V.; E. Afgan, Q. Gu, D. Clements, D. Blankenberg, J. Goecks, J. Taylor & A. Nekrutenko. 2020. The Galaxy Platform for Accessible, Reproducible and Collaborative Biomedical Analyses: 2020 Update. Nucleic Acids Research 48 (W1): W395-402. DOI: https://doi.org/10.1093/nar/gkaa434
James, T. Y.; J. E. Stajich, C. T. Hittinger & A. Rokas. 2020. Toward a Fully Resolved Fungal Tree of Life. Annual Review of Microbiology 74 (1): 291-313. DOI: https://doi.org/10.1146/annurev-micro-022020-051835
Kirker, G. T.; A. B. Bishell, M. A. Jusino, J. M. Palmer, W. J. Hickey & D. L. Lindner. 2017. Amplicon-Based Sequencing of Soil Fungi from Wood Preservative Test Sites. Frontiers in Microbiology 8: 1997. DOI: https://doi.org/10.3389/fmicb.2017.01997
Küngas, K.; M. Bahram & K. Põldmaa. 2020. Host Tree Organ Is the Primary Driver of Endophytic Fungal Community Structure in a Hemiboreal Forest. FEMS Microbiology Ecology 96 (2): 1-10. DOI: https://doi.org/10.1093/femsec/fiz199
McMurdie, P. J. & S. Holmes. 2013. Phyloseq: An R Package for Reproducible Interactive Analysis and Graphics of Microbiome Census Data. Edited by Michael Watson. PLoS ONE 8 (4): e61217. DOI: https://doi.org/10.1371/journal.pone.0061217
McMurdie, P. J. & J. N. Paulson. 2016. Biomformat: An Interface Package for the BIOM File Format. R/Bioconductor Package.
Migliorini, D.; M. Messal, A. Santini, A. P. Ramos, P. Talhinhas, M. J. Wingfield & T. Burgess. 2021. Metabarcoding Reveals Southern Hemisphere Fungal Endophytes within Wood of Cultivated Proteaceae in Portugal. European Journal of Plant Pathology 160 (1): 173-184. DOI: https://doi.org/10.1007/s10658-021-02233-8
Molina, L.; M. Rajchenberg, A. de Errasti, M. C. Aime & M. B. Pildain. 2020. Sapwood-Inhabiting Mycobiota and Nothofagus Tree Mortality in Patagonia: Diversity Patterns According to Tree Species, Plant Compartment and Health Condition. Forest Ecology and Management 462: 117997. DOI: https://doi.org/10.1016/j.foreco.2020.117997
Molina, L.; M. Rajchenberg, A. de Errasti, B. Vogel, M. P. A. Coetzee, M. C. Aime & M. B. Pildain. 2022. Sapwood mycobiome varies across host, plant compartment and environments in Nothofagus forests from Northern Patagonia. Molecular Ecology 00: 1-20. DOI: https://doi.org/10.1111/mec.16771
Molina, L. & M. B. Pildain. 2022. Uso de la secuenciación de segunda generación (NGS) para descubrir la diversidad de hongos degradadores de la madera en los bosques Andino Patagónicos. Lilloa 59 (Suplemento): 155-172. DOI: https://doi.org/10.30550/j.lil/2022.59.S/2022.09.22
Mysara, M.; M. Njima, N. Leys, J. Raes & P. Monsieurs. 2017. From Reads to Operational Taxonomic Units: An Ensemble Processing Pipeline for MiSeq Amplicon Sequencing Data. GigaScience 6 (2): 1-10. DOI: https://doi.org/10.1093/gigascience/giw017
Nilsson, R. H.; S. Anslan, M. Bahram, C. Wurzbacher, P. Baldrian & L. Tedersoo. 2019. Mycobiome Diversity: High-Throughput Sequencing and Identification of Fungi. Nature Reviews Microbiology 17 (2): 95-109. DOI: https://doi.org/10.1038/s41579-018-0116-y
Oksanen, J.; F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R. Minchin, R. B. O’Hara, G. L. Simpson & P. Solymos. 2020. Vegan: Community Ecology Package. R Package Version 2.5.7. 2020.
Palmer, J. M.; M. A. Jusino, M. T. Banik & D. L. Lindner. 2018. Non-Biological Synthetic Spike-in Controls and the AMPtk Software Pipeline Improve Mycobiome Data. PeerJ 6 (5): e4925. DOI: https://doi.org/10.7717/peerj.4925
Pauvert, C.; M. Buée, V. Laval, V. Edel-Hermann, L. Fauchery, A. Gautier, I. Lesur, J. Vallance & C. Vacher. 2019. Bioinformatics Matters: The Accuracy of Plant and Soil Fungal Community Data Is Highly Dependent on the Metabarcoding Pipeline. Fungal Ecology 41: 23-33. DOI: https://doi.org/10.1016/j.funeco.2019.03.005
Porter, T. M.; J. E. Skillman & J.-M. Moncalvo. 2008. Fruiting Body and Soil RDNA Sampling Detects Complementary Assemblage of Agaricomycotina (Basidiomycota, Fungi) in a Hemlock-Dominated Forest Plot in Southern Ontario. Molecular Ecology 17 (13): 3037-3050. DOI: https://doi.org/10.1111/j.1365-294X.2008.03813.x
Purahong, W.; A. Mapook, Y.-T. Wu & C.-T. Chen. 2019. Characterization of the Castanopsis carlesii Deadwood Mycobiome by Pacbio Sequencing of the Full-Length Fungal Nuclear Ribosomal Internal Transcribed Spacer (ITS). Frontiers in Microbiology 10: 1-14. DOI: https://doi.org/10.3389/fmicb.2019.00983
R Core Team. 2022. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. Available at https://www.R-project.org/
Rognes, T.; T. Flouri, B. Nichols, C. Quince & F. Mahé. 2016. VSEARCH: A Versatile Open Source Tool for Metagenomics. PeerJ 4 (10): e2584. DOI: https://doi.org/10.7717/peerj.2584
Roper, M.; C. Ellison, J. W. Taylor & N. L. Glass. 2011. Nuclear and Genome Dynamics in Multinucleate Ascomycete Fungi. Current Biology 21 (18): R786-93. DOI: https://doi.org/10.1016/j.cub.2011.06.042
Saikkonen, K.; S. H. Faeth, M. Helander & T. J. Sullivan. 1998. Fungal Endophytes: A Continuum of Interactions with Host Plants. Annual Review of Ecology and Systematics 29 (1): 319-343. DOI: https://doi.org/10.1146/annurev.ecolsys.29.1.319
Schloss, P. D. & S. L. Westcott. 2011. Assessing and Improving Methods Used in Operational Taxonomic Unit-Based Approaches for 16S RRNA Gene Sequence Analysis. Applied and Environmental Microbiology 77 (10): 3219-3226. DOI: https://doi.org/10.1128/AEM.02810-10
Schoch, C. L.; K. A. Seifert, S. Huhndorf, V. Robert, J. L. Spouge, C. A. Levesque, W. Chen et al. 2012. Nuclear Ribosomal Internal Transcribed Spacer (ITS) Region as a Universal DNA Barcode Marker for Fungi. Proceedings of the National Academy of Sciences of the United States of America 109 (16): 6241-6246. DOI: https://doi.org/10.1073/pnas.1117018109
Schoch, C. L, B. Robbertse, V. Robert, D. Vu, G. Cardinali, L. Irinyi, W. Meyer et al. 2014. Finding Needles in Haystacks: Linking Scientific Names, Reference Specimens and Molecular Data for Fungi. Database 2014: bau061-bau061. DOI: https://doi.org/10.1093/database/bau061
Smith, D. P. & K. G. Peay. 2014. Sequence Depth, Not PCR Replication, Improves Ecological Inference from Next Generation DNA Sequencing. PLoS ONE 9 (2): e90234. DOI: https://doi.org/10.1371/journal.pone.0090234
Stone, J. K.; J. D. Polishook & J. F. J. White. 2004. Endophytic Fungi. In Biodiversity of Fungi: Inventory and Monitoring Methods, edited by G. M. Mueller; G. F. Billis & M. S. Foster, 241-270. Burlinghton: Elsevier. DOI: https://doi.org/10.13140/RG.2.1.2497.0726
Suryanarayanan, T. S. 2020. The Need to Study the Holobiome for Gainful Uses of Endophytes. Fungal Biology Reviews 34 (3): 144-150. DOI: https://doi.org/10.1016/j.fbr.2020.07.004
Tedersoo, L.; S. Anslan, M. Bahram, S. Põlme, T. Riit, I. Liiv, U. Kõljalg et al. 2015. Shotgun Metagenomes and Multiple Primer Pair-Barcode Combinations of Amplicons Reveal Biases in Metabarcoding Analyses of Fungi. MycoKeys 10: 1-43. DOI: https://doi.org/10.3897/mycokeys.10.4852
Terhonen, E.; K. Blumenstein, A. Kovalchuk & F. O. Asiegbu. 2019. Forest Tree Microbiomes and Associated Fungal Endophytes: Functional Roles and Impact on Forest Health. Forests 10 (1): 42. DOI: https://doi.org/10.3390/f10010042
Unterseher, M. 2011. Diversity of Fungal Endophytes in Temperate Forest Trees. In Endophytes of Forest Trees: Biology and Applications, edited by A. M. Pirttilä & A. C. Frank, 80: 31-46. Forestry Sciences. Dordrecht: Springer Netherlands. DOI: https://doi.org/10.1007/978-94-007-1599-8_2
Vesty, A.; K. Biswas, M. W. Taylor, K. Gear & R. G. Douglas. 2017. Evaluating the Impact of DNA Extraction Method on the Representation of Human Oral Bacterial and Fungal Communities. PLOS ONE 12 (1): e0169877. DOI: https://doi.org/10.1371/journal.pone.0169877
Wang, P.; Y. Chen, Y. Sun, S. Tan, S. Zhang, Z. Wang, J. Zhou et al. 2019. Distinct Biogeography of Different Fungal Guilds and Their Associations With Plant Species Richness in Forest Ecosystems. Frontiers in Ecology and Evolution 7: 216. DOI: https://doi.org/10.3389/fevo.2019.00216
Wang, Q.; G. M. Garrity, J. M. Tiedje & J. R. Cole. 2007. Naïve Bayesian Classifier for Rapid Assignment of RRNA Sequences into the New Bacterial Taxonomy. Applied and Environmental Microbiology 73 (16): 5261-5267. DOI: https://doi.org/10.1128/AEM.00062-07
Wang, X.-C.; C. Liu, L. Huang, J. Bengtsson-Palme, H. Chen, J.-H. Zhang, D. Cai & J.-Q. Li. 2015. ITS1: A DNA Barcode Better than ITS2 in Eukaryotes? Molecular Ecology Resources 15 (3): 573-586. DOI: https://doi.org/10.1111/1755-0998.12325
Weiss, S.; W. Van Treuren, C. Lozupone, K. Faust, J. Friedman, Y. Deng, L. C. Xia et al. 2016. Correlation Detection Strategies in Microbial Data Sets Vary Widely in Sensitivity and Precision. The ISME Journal 10 (7): 1669-1681. DOI: https://doi.org/10.1038/ismej.2015.235
White, T. J.; T. Bruns, S. J. W. T. Lee & J. Taylor. 1990. Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In PCR Protocols: A Guide to Methods and Applications, edited by T. J. White; T. Bruns, S. J. W. T. Lee, J. Taylor, M. A. Innis, D. H. Gelfand & J. J. Sninsky, 315-322. New York: Academic Press.
Wickham, H. 2016. Ggplot2: Elegant Graphics for Data Analysis. New York: Springer-Verlag. DOI: https://ggplot2.tidyverse.org

Downloads
Published
How to Cite
Issue
Section
License

Starting on 2012, Darwiniana Nueva Serie uses Licencia Creative Commons Atribución-NoComercial 2.5 Argentina .