What do we know about biocrust lichens in Argentina? A comprehensive review and new records
DOI:
https://doi.org/10.14522/darwiniana.2024.122.1229Keywords:
biocrust, Gloeoheppia, Heppia, Heteroplacidium, Verrucariaceae, semiarid, lichenAbstract
Lichens are among the most distinctive and colorful organisms found in biological soil crusts (biocrusts). Along with cyanobacteria, green algae, and bryophytes, they inhabit the top few millimeters of the soil surface, forming the living skin of the soil. They cover large areas of the planet's arid and semiarid regions, as well as degraded terrestrial ecosystems in other regions. Although global studies of biocrusts have tripled in the last two decades, South America remains one of the least studied continents. In Argentina, ecological studies of biocrusts are increasing, but knowledge of the taxonomic diversity of the lichens that comprise them remains limited. Therefore, it is crucial to increase studies on terrestrial lichens, which, although often inconspicuous, may be more abundant than previously thought. To contribute to the knowledge of biocrust lichens taxonomy in Argentina, we proposed to 1) perform a bibliographic review of the works that reported species lists to confirm and update the taxonomic nomenclature and distribution, and 2) expand knowledge in less studied regions through the study of specimens from central Argentina. The results reveal that between 2002 and 2022, 78 crust-forming lichen species were recorded in Argentina. The richest family was Verrucariaceae, along with Collemataceae, Peltulaceae, and Lichinaceae distributed in the northern, western, and central-southern regions of the country, mainly in the arid and semiarid areas of Mendoza, San Juan, Neuquén, and San Luis. The most common lichen species found in the crusts were Placidium squamulosum, Endocarpon pusillum, Enchylium tenax, Peltula obscurans, and Psora decipiens, in descending order. We have expanded this lichen diversity with three new species records for Argentina: Gloeoheppia erosa, Heppia adglutinata, and Heteroplacidium divisum, as well as the distribution of Enchylium coccophorum, Peltula obscurans, Placidium squamulosum, and Psora icterica in the central region of the country. In this way, we hope that this study can serve as a starting point for future research on lichen composition in soil crusts.
References
Armstrong, R. A. 2017. Adaptation of lichens to extreme conditions. In Shukla, V.; S. Kumar & N. Kumar (eds.) Plant adaptation strategies in changing environment, Springer.
Aranibar, J. N.; M. J. Repetur, V. R. García, R. E. Dazat, M. E. C. Videla & P. E. Villagra. 2022. Functional responses of biological soil crusts to simulated small precipitation pulses in the Monte desert, Argentina. Geoderma 410: 115660. DOI: https://doi.org/10.1016/j.geoderma.2021.115660
Barreno Rodríguez, E. & S. Pérez-Ortega. 2003. Líquenes de la reserva natural integral de Muniellos, Asturias. KRK ediciones.
Belnap, J. & O. L. Lange (eds.). 2003. Biological soil crusts: structure, function and management. Ecological Studies. Springer, Berlin. DOI: https://doi.org/10.1007/978-3-642-56475-8.
Bowker, M. A.; R. L. Mau, F. T. Maestre, C. Escolar & A. P. Castillo-Monroy. 2011. Functional profiles reveal unique ecological roles of various biological soil crust organisms. Functional Ecology 25: 787-795. DOI: https://doi.org/10.1111/j.1365-2435.2011.01835.x
Bowker, M. A.; B. Büdel, F. Maestre, A. Antoninka & D. Eldridge. 2017. Bryophyte and Lichen Diversity on Arid Soils: Determinants and Consequences; In B. Steven (ed.), The Biology of Arid Soils. Berlin, Boston: De Gruyter. DOI: https://doi.org/10.1515/9783110419047-005
Bowker, M. A.; S. C. Reed, F. T. Maestre & J. E. David. 2018. Biocrusts: the living skin of the earth. Plant Soil 429: 1-7. DOI: https://doi.org/10.1007/s11104-018-3735-1
Breuss, O. 1993. Catapyrenium (Verrucariaceae) species from South America. Plant Systematics and Evolution 185: 17-33.
Breuss, O. 2010. An Updated World-Wide Key to the Catapyrenioid Lichens (Verrucariaceae). Herzogia 23(2): 205-16. DOI: https://doi.org/10.13158/heia.23.2.2010.205
Brodo, I. M.; S. D. Sharnoff & S. Sharnoff. 2001. Lichens of North America. Yale University Press, New Haven and London.
Büdel, B. 2001. Biological Soil Crusts of South America. In J. Belnap & O. L. Lange (eds.), Biological Soil Crusts: Structure, Function, and Management. Springer-Verlag Berlin Heidelberg.
Büdel, B. & C. Scheidegger. 2008. Thallus morphology and anatomy. In T. H. Nash, III (eds.), Lichen biology.Cambridge University Press.
Büdel, B.; M. Vivas & O. L. Lange. 2013. Lichen species dominance and the resulting photosynthetic behavior of Sonoran Desert soil crust types (Baja California, Mexico). Ecology Process 2: 6. DOI: https://doi.org/10.1186/2192-1709-2-6
Bustos, M. J.; I. A. Garibotti; N. Cech; M. C. Navarro; M. Gonzalez Polo & P. Satti. 2022. Microhabitat-specific differences on the composition and function of biological soil crust communities. Plant and Soil 479: 663–677. doi:10.1007/s11104-022-05556-5.
Calvelo, S. & S. Liberatore. 2002. Catálogo de los Líquenes de la Argentina. Kurtziana 29(2): 7-170.
Candan, M. & M. Schultz. 2015. New and Additional Records of Cyanolichens from Turkey. Herzogia 28(2): 359-69. DOI: https://doi.org/10.13158/heia.28.2.2015.359.
Cannon, P.; M. A. G. Otálora, A. Košuthová, M. Wedin, A. Aptroot, B. Coppins & J. Simkin. 2020. Peltigerales: Collemataceae, including the genera Blennothallia, Callome, Collema, Enchylium, Epiphloea, Lathagrium, Leptogium, Pseudoleptogium, Rostania and Scytinium. Revisions of British and Irish Lichens 2: 1-38. DOI: https://doi.org/10.34885/174
Castillo-Monroy, A. P. & F. T. Maestre. 2011. La costra biológica del suelo: Avances recientes en el conocimiento de su estructura y función ecológica. Revista Chilena de Historia Natural 84: 1-21.
Cingolani, A. M.; M. V. Vaieretti, M. A. Giorgis, N. La Torre, J. I. Whitworth-Hulse & D. Renison. 2013. Can Livestock and Fires Convert the Sub-Tropical Mountain Rangelands of Central Argentina into a Rocky Desert?. The Rangeland Journal 35(3): 285-97. DOI: https://doi.org/10.1071/RJ12095
Consortium of Lichen Herbaria. 2024. http//:lichenportal.org/portal/index.php. Accessed on July 12.
Corvalán Videla, M. E. 2019. Diversidad florística y funcional de las costras biológicas de suelo en el Desierto del Monte Central, y su efecto en la funcionalidad del ecosistema. Tesis Doctoral. Universidad Nacional de Cuyo, Argentina.
de Martonne, E., editor. 1925. The New Edition of de Martonne’s Physical Geography. Geographical Review 15:336–337.
Egea, J. M. 1989. Los Géneros Heppia y Peltula (Líquenes) En Europa Occidental y Norte de África. Bibliotheca Lichenologica 31: 1-122.
Fernández, D. S.; M. E. Puchulu, C. M. Rostagno, L. La Manna, A. R. Becker, M. Del T. Grumelli, & H. F. Schiavo. 2023. Agricultural Land Degradation in Argentina. In: Pereira, P.; M. Muñoz-Rojas, I. Bogunovic & W. Zhao (eds.), Impact of Agriculture on Soil Degradation I: Perspectives from Africa, Asia, America and Oceania 120: 1-47. The Handbook of Environmental Chemistry. Cham: Springer International Pub. DOI: https://doi.org/10.1007/698_2022_917
Finger-Higgens, R.; M. C. Duniway, S. Fick, E. L. Geiger, D. L. Hoover, A. A. Pfennigwerth, M. W. Van Scoyoc & J. Belnap. 2022. Decline in biological soil crust N-fixing lichens linked to increasing summertime temperatures. Proceedings of the National Academy of Sciences 119(16): e2120975119. DOI: https://doi.org/10.1073/pnas.2120975119
Ganem, K. A.; Y. Xue, A. A. Rodrigues, W. Franca-Rocha, M. T. Oliveira, N. S. Carvalho, E. Y. T. Cayo, M. R. Rosa, A. C. Dutra & Y. E. Shimabukuro. 2022. Mapping South America’s Drylands through Remote Sensing—A Review of the Methodological Trends and Current Challenges. Remote Sensing 14(3): 736. DOI: https://doi.org/10.3390/rs14030736
García, V.; J. Aranibar & N. Pietrasiak. 2015. Multiscale effects on biological soil crust cover and spatial distribution in the Monte Desert. Acta Oecologica 69: 35-45. DOI: https://doi.org/10.1016/j.actao.2015.08.005
García, V. R. 2022. Costra Biológica del Suelo como potencial herramienta para restaurar sistemas degradados del Desierto del Monte Central, Argentina. Tesis Doctoral. Universidad Nacional de Cuyo, Argentina.
Garibotti, I. A.; M. Gonzalez Polo & S. Tabeni. 2018. Linking biological soil crust attributes to the multifunctionality of vegetated patches and interspaces in a semiarid shrubland. Functional Ecology 32: 1065-1078. DOI: https://doi.org/10.1111/1365-2435.13044
Garibotti, I. A. & Gonzalez Polo, M. 2021. Divergence among biological soil crust communities developing under different environmental conditions. Journal of Vegetation Science 32(1): e12987. DOI: https://doi.org/10.1111/jvs.12987
Gómez, D. A.; J. N. Aranibar, S. Tabeni, P. E. Villagra, I. A. Garibotti & A. Atencio. 2012. Biological soil crust recovery after long-term grazing exclusion in the Monte Desert (Argentina). Changes in coverage, spatial distribution, and soil nitrogen. Acta Oecologica 38: 33-40. DOI: https://doi.org/10.1016/j.actao.2011.09.001
Guiamet, P. S.; D. M. Soto & M. Schultz. 2019. Bioreceptivity of archaeological ceramics in an arid region of northern Argentina. International Biodeterioration & Biodegradation 141: 2-9. DOI: https://doi.org/10.1016/j.ibiod.2018.10.003
Henssen, A. 1994. Contribution to the morphology and species delimitation in Heppia sensu stricto (lichenized Ascomycotina). Acta Botanica Fennica 150: 57-73.
Henssen, A. 1995. The New Lichen family Gloeoheppiaceae and its Genera Gloeoheppia, Pseudopeltula and Gudelia (Lichinales). The Lichenologist 27(4): 261-290. DOI: https://doi.org/10.1006/lich.1995.0025
Jørgensen, P. M. 2007. Collemataceae. Nordic Lichen Flora 3: 14-42.
Jørgensen, P. M. & Z. Palice. 2015. Additions to the Cyanolichens of the Andes. Herzogia 28(1): 285-87. DOI: https://doi.org/10.13158/heia.28.1.2015.285
Leppik, E.; I. Jüriado, A. Suija & J. Liira. 2015. Functional ecology of rare and common epigeic lichens in alvar grasslands. Fungal Ecology 13: 66-76.
Manzitto‐Tripp, E. A.; J. C. Lendemer & C. M. McCain. 2022. Most lichens are rare, and degree of rarity is mediated by lichen traits and biotic partners. Diversity and Distributions 28(9): 1810-1819.
Marques, J.; M. Schultz & G. Paz-Bermúdez. 2013. A Peltula Nyl. Diversity Hotspot in North-East Portugal, with One Species New to Science and Three Species New to Mainland Europe. The Lichenologist 45(4): 483-96. DOI: https://doi.org/10.1017/S0024282913000261
Matos, P.; P. Pinho, G. Aragón, I. Martínez, A. Nunes, A. M. Soares & C. Branquinho. 2015. Lichen traits responding to aridity. Journal of Ecology 103(2): 451-458.
McCune, B. & R. Rosentreter. 2007. Biotic Soil Crust Lichens of the Columbia Basin: Monographs in North American Lichenology. 1. Northwest Lichenologists, Corvallis, Oregon.
Nash III, T. H.; B. D. Ryan, C. Gries & F. Bungartz (eds). 2002. Lichen Flora of the Greater Sonoran Desert Region. 1. Lichens Unlimited, School of Life Sciences, Arizona State University, Tempe, Arizona.
Nash III, T. H.; B. D. Ryan, P. Diederich, C. Gries & F. Bungartz (eds). 2004. Lichen Flora of the Greater Sonoran Desert Region. 2. Lichens Unlimited, School of Life Sciences, Arizona State University, Tempe, Arizona.
Navas Romero, A. L. 2019. Funciones ecosistémicas y atributos ecológicos de las costras biológicas en ecosistemas semiáridos-áridos-hiperáridos del centro-oeste de la Argentina. Tesis Doctoral, Universidad Nacional de Cuyo, Argentina.
Navas Romero, A. L.; E. Martínez Carretero & M. Herrera Moratta. 2021. Restauración de costras biológicas del suelo: pasado, presente y futuro. Multequina 30(2): 25-47.
Perazzo, A. & J. Rodríguez. 2019. Impacto del fuego sobre la vegetación no vascular del suelo: un caso de estudio en los bosques de Polylepis australis (Rosaceae) del centro de Argentina. Lilloa 56:67-80. DOI: https://doi.org/10.30550/j.lil/2019.56.2/6
Pissolito, C.; I. Garibotti, & R. Villalba. 2021. Inter-annual climatic variability modulates biotic interactions on early Nothofagus pumilio community development. Plant Ecology & Diversity 14:65-80.
Prieto, M.; G. Aragón & I. Martínez. 2008a. New records in the lichen family Verrucariaceae (Ascomycota) from Argentina. Boletín de la Sociedad Argentina de Botánica 43(3-4): 205-210.
Prieto, M.; G. Aragón, I. Martínez & O. Breuss. 2008b. A new species of Anthracocarpon (Verrucariaceae) from Argentina. The Bryologist 111(1): 128-132.
Prieto, M.; I. Martínez, G. Aragón, C. Gueidan & F. Lutzoni. 2012. Molecular phylogeny of Heteroplacidium, Placidium, and related catapyrenioid genera (Verrucariaceae, Lichen-Forming Ascomycota). American Journal of Botany 99(1): 23-35. DOI: https://doi.org/10.3732/ajb.1100239
Rosentreter, R.; M. Bowker & J. Belnap. 2007. A field guide to biological soil crusts of western U.S. drylands: Common lichens and bryophytes. Bureau of Land Management 1-104.
Schultz, M. & B. Büdel. 2002. Key to the Genera of the Lichinaceae. The Lichenologist 34(1): 39-62. DOI: https://doi.org/10.1006/lich.2001.0367
Scutari, N. C.; B. Doris Diez & H. T. Lumbsch. 2002. New records of soil-associated lichens from north-eastern Patagonia (Chubut, Argentina). Mycotaxon 83: 369-383.
Scutari, N. C.; M. B. Bertiller & A. L. Carrera. 2004. Soil-associated lichens in rangelands of north-eastern Patagonia. Lichen groups and species with potential as bioindicators of grazing disturbance. The Lichenologist 36(6): 405-412. DOI: https://doi.org/10.1017/S0024282904014008
Soule, T.; I. J. Anderson, S. L. Johnson, S. T. Bates & F. Garcia-Pichel. 2009. Archaeal populations in biological soil crusts from arid lands in North America. Soil Biology and Biochemistry 41(10): 2069-2074. DOI: https://doi.org/10.1016/j.soilbio.2009.07.023
Tabeni, S.; I. A. Garibotti, C. Pissolito & J. N. Aranibar. 2014. Grazing effects on biological soil crusts and their interaction with shrubs and grasses in an arid rangeland. Journal of Vegetation Science 25(6): 1417-25. DOI: https://doi.org/10.1111/jvs.12204
Velasco Ayuso, S.; G. R. Oñatibia, F. T. Maestre & L. Yahdjian. 2020. Grazing pressure interacts with aridity to determine the development and diversity of biological soil crusts in Patagonian rangelands. Land Degradation & Development 31(4): 488-499.
Weber, B.; J. Belnap, B. Büdel, A. J. Antoninka, N. N. Barger, V. Bala Chaudhary, A. Darrouzet-Nardi, D. J. Eldridge, A. M. Faist, S. Ferrenberg, C. A. Havrilla, E. Huber-Sannwald, O. M. Issa, F. T. Maestre, S. C. Reed, E. Rodriguez-Caballero, C. Tucker, K. E. Young, Y. Zhang, Y. Zhao, X. Zhou & M. A. Bowker. 2022. What is a biocrust? A refined, contemporary definition for a broadening research community. Biological Reviews 97(5): 1768-85. DOI: https://doi.org/10.1111/brv.12862
Wetmore, C. M. 1970. The lichen family Heppiaceae in North America. Annals of the Missouri Botanical Garden 57: 158-209.
Yahdjian, L.; L. J. Carboni, S. Velasco Ayuso & G. R. Oñatibia. 2023. Intensification of livestock farming in times of climate change. The challenges of domestic grazing in the drylands of the Argentine Patagonia. Mètode Science Studies Journal 13: 25-31.

Downloads
Published
How to Cite
Issue
Section
License

Starting on 2012, Darwiniana Nueva Serie uses Licencia Creative Commons Atribución-NoComercial 2.5 Argentina .