Pollen deposition patterns onto the pollinators’ body in sphingophilous communities of subtropical Argentina
DOI:
https://doi.org/10.14522/darwiniana.2014.21.568Keywords:
Flower morphology, hawkmoth pollination, plant-pollinator morphological fit, sphingophily, subtropical Argentina.Abstract
Plant species that coexist and share pollinators may experience inter-specific competition for pollinator service or interference of improper pollen. To avoid the latter, plant species may use different areas of the pollinators´ body to deposit their pollen, either by different floral architectures or by different floral lengths. We evaluate here the existence of this pattern of differential use of body areas of pollinators in 33 sphingophilous communities of subtropical Argentina. We use null models to evaluate if the plants deposit the pollen overdispersed relative to what would be expected by chance either in different body parts or at different heights in the proboscis of hawkmoth pollinators. We found that 42 native plants species are pollinated by hawkmoths in subtropical Argentina. We observed a significant and positive correlation between the operative length –i.e. the distance between anthers and stigma from nectar– of the flowers and the mean length of the proboscis of hawkmoth pollinators. However, both the average diversity of pollen deposition sites and the average difference of operative length between sphingophilous plant species present in the same community were not significantly different than expected under a null model. When analyzing the results in individual communities, nine communities showed a diversity of pollen deposition sites significantly higher than expected by chance and two communities showed a difference in the operative length greater than expected by chance. These results suggest that other factors such as the degree of generalization in pollination, phenology and / or the use of distinctive floral signals may be avoiding competition for pollinators between coexisting plants species.References
Agosta, S. J. & D. H. Janzen. 2005. Body size distributions of large Costa Rican dry forest moths and the underlying relationship between plant and pollinator morphology. Oikos 108: 183-193. DOI: http://dx.doi.org/10.1111/j.0030-1299.2005.13504.x
Alarcón, R.; G. Davidowitz & J. L. Bronstein. 2008. Nectar usage in a southern Arizona hawkmoth community. Ecological Entomology 33: 503-509. DOI: http://dx.doi.org/10.1111/j.1365-2311.2008.00996.x
Amorim, F. W.; L. Galetto & M. Sazima. 2013. Beyond the pollination syndrome: nectar ecology and the role of diurnal and nocturnal pollinators in the reproductive success of Inga sessilis (Fabaceae). Plant Biology 15: 317-327. DOI: http://dx.doi.org/10.1111/j.1438-8677.2012.00643.x
Anderson, B.; R. Alexandersson & S. D. Johnson. 2010. Evolution and coexistence of pollination ecotypes in an African Gladiolus (Iridaceae). Evolution 64: 960-972.DOI: http://dx.doi.org/10.1111/j.1558-5646.2009.00880.x
Arditti, J.; J. Elliott, I. J. Kitching & L. T. Wasserthal. 2012. ‘Good heavens what insect can suck it’– Charles Darwin, Angraecum sesquipedale and Xanthopan morganii praedicta. Botanical Journal of the Linnean Society 169: 403-432. DOI: http://dx.doi.org/10.1111/j.1095-8339.2012.01250.x
Armbruster, W. S.; M. E. Edwards & E. M. Debevec. 1994. Floral character displacement generates assemblage structure of Western Australian triggerplants (Stylidiaceae). Ecology 75: 315-329. DOI: http://dx.doi.org/10.2307/1939537
Buzato, S.; M. Sazima & I. Sazima. 2000. Hummingbird-pollinated floras at three Atlantic forest sites. Biotropica 32: 824-841. DOI: http://dx.doi.org/10.1111/j.1744-7429.2000.tb00621.x
Campbell, D. R. 1985. Pollinator sharing and seed set of Stellaria pubera: competition for pollination. Ecology 66: 544-553. DOI; http://dx.doi.org/10.2307/1940403
Cocucci, A. A.; M. Moré & A. N. Sérsic. 2009. Restricciones mecánicas en las interacciones planta-polinizador: estudio de casos en plantas polinizadas por esfíngidos, en R. Medel, M. Aizen & R. Zamora (eds), Ecología y evolución de interacciones planta animal, pp. 43-60. Santiago de Chile: Editorial Universitaria.
Darrault, R. O. & C. Schlindwein. 2002. Esfingídeos (Lepidoptera, Sphingidae) no Tabuleiro Paraibano, nordeste do Brasil: abundância, riqueza e relaçao com plantas esfingófilas. Revista Brasileira de Zoología 19: 429-443. DOI: http://dx.doi.org/10.1590/S0101-81752002000200009
Darwin, C. 1862. On the various contrivances by which British and foreign orchids are fertilized by insects. London: Murray.
Delpino, F. 1874. Ulteriori osservasione e considerazioni sulla dicogamia del regno vegetale. Delle piante zoidifile. Atti della Società Italiana di Scienze Naturali (Milano) 16: 151.
Endress, P. K. 1994. Diversity and evolutionary biology of tropical flowers. Cambridge: Cambridge University Press.
Feinsinger, P. 1983. Coevolution and pollination, en D. J. Futuyma & M. Slatkin (eds.), Coevolution, pp. 282-310. Sunderland: Sinauer Associates Inc.
Goyret, J.; M. Pfaff, R. A. Raguso & A. Kelber. 2008. Why do Manduca sexta feed from white flowers? Innate and learnt colour preferences in a hawkmoth. Naturwissenschaften 95: 569-576. DOI: http://dx.doi.org/10.1007/s00114-008-0350-7
Grant, V. 1992. Floral isolation between ornithophilous and sphingophilous species of Ipomopsis and Aquilegia. Proceedings of the National Academy of Sciences of the United States of America 89: 11828-11831. DOI: http://dx.doi.org/10.1073/pnas.89.24.11828
Gregory, D. P. 1964. Hawkmoth pollination in the genus Oenothera. Aliso 5: 385-419.
Haber, W. A. & G. W. Frankie. 1989. A tropical hawkmoth community: Costa Rican dry forest Sphingidae. Biotropica 21: 155-172. DOI: http://dx.doi.org/10.2307/2388706
Johnson, S. D. & K. E. Steiner. 1997. Long-tongued fly pollination and evolution of floral spur length in the Disa draconis complex (Orchidaceae). Evolution 51: 45-53. DOI: http://dx.doi.org/10.2307/2410959
Johnson, S. D.; T. J. Edwards, C. Carbutt & Potgieter C. J. 2002. Specialization for hawkmoths and long-proboscid fly pollination in Zaluzianskya section Nycteria (Scrophulariaceae). Botanical Journal of the Linnean Society 138: 17-27. DOI: http://dx.doi.org/10.1046/j.1095-8339.2002.00005.x
Kaczorowski, R. L.; A. R. Seliger, A. C. Gaskett, S. K. Wigsten & R. A. Raguso. 2012. Corolla shape vs. size in flower choice by a nocturnal hawkmoth pollinator. Functional Ecology 26: 577-587. DOI: http://dx.doi.org/10.1111/j.1365-2435.2012.01982.x
Kitching, I. J.; C. R. Smith, V. Blagoderov, S. J. Sadler, R. P. W. Young & M. J. Scoble. [consulta: diciembre 2013]. CATE (Creating a Taxonomic e-Science). Sphingidae, version 1.3 (online), http://www.cate-sphingidae.org
Kislev, M. E.; Z. Kraviz & J. Lorch. 1972. A study of hawkmoth pollination by a palynological analysis of the proboscis. Israel Journal of Botany 21: 57-75.
Knudsen, J. T. & L. Tollsten. 1993. Trends in floral scent chemistry in pollination syndromes: floral scent composition in moth-pollinated taxa. Botanical Journal of the Linnean Society 113: 263-284. DOI: http://dx.doi.org/10.1111/j.1095-8339.1993.tb00340.x
Knuth, P. 1906. Handbook of flower pollination. Oxford: Oxford University Press.
Martins, D. J. & S. D. Johnson. 2013. Interactions between hawkmoths and flowering plants in East Africa: polyphagy and evolutionary specialization in an ecological context. Biological Journal of the Linnean Society 110: 199-213. DOI: http://dx.doi.org/10.1111/bij.12107
Miller, R. B. 1981. Hawkmoths and the geographic patterns of floral variation in Aquilegia caerulea. Evolution 35: 763-774. DOI; http://dx.doi.org/10.2307/2408246
Moré, M.; I. J. Kitching & Cocucci, A. A. 2005. Sphingidae: Esfíngidos de Argentina. Hawkmoths of Argentina. Buenos Aires: L.O.L.A. (Literature of Latin America).
Moré, M.; A. N. Sérsic & A. A. Cocucci. 2006. Specialized use of pollen vectors by Caesalpinia gilliesii, a legume species with brush-type flowers. Biological Journal of the Linnean Society 88: 579-592. DOI: http://dx.doi.org/10.1111/j.1095-8312.2006.00644.x
Moré, M.; A. N. Sérsic & A. A. Cocucci. 2007. Restriction of pollinator assemblage through flower length and width in three long-tongued hawkmoth-pollinated species of Mandevilla (Apocynaceae, Apocynoideae). Annals of the Missouri Botanical Garden 94: 485-504. DOI: http://dx.doi.org/10.3417/0026-6493(2007)94[485:ROPATF]2.0.CO;2
Moré, M.; F. W. Amorim, S. M. Benitez-Vieyra, M. A. Medina, M. Sazima & A. A. Cocucci. 2012. Armament imbalances: match and mismatch in plantpollinator traits of highly specialized long-spurred orchids. PLoS ONE 7(7): e 41878.
Muchhala, N. 2007. Adaptive trade-off in floral morphology mediates specialization for flowers pollinated by bats and hummingbirds. The American Naturalist 169: 494-504. DOI; http://dx.doi.org/10.1086/512047
Muchhala, N. & M. D. Potts. 2007. Character displacement among bat-pollinated flowers of the genus Burmeistera: analysis of mechanism, process and pattern. Proceedings of the Royal Society Series B 274: 2731-2737. DOI: http://dx.doi.org/10.1098/rspb.2007.0670
Murcia, C. & P. Feinsinger. 1996. Interspecific pollen loss by hummingbirds visiting flower mixtures: effects of floral architecture. Ecology 77: 550-560. DOI: http://dx.doi.org/10.2307/2265629
Nilsson, L. A. 1998. Deep flowers for long tongues. Trends in Ecology and Evolution 13: 259-260. DOI: http://dx.doi.org/10.1016/S0169-5347(98)01359-7
Nilsson, L. A.; L. Jonsson, L. Ralison & E. Randrianjohany. 1987. Angraecoid orchids and hawkmoths in central Madagascar: Specialized pollination systems and generalist foragers. Biotropica 19: 310-318. DOI: http://dx.doi.org/10.2307/2388628
Nilsson, L. A.; L. Jonsson, L. Rason & E. Randrianjohany. 1985. Monophyly and pollination mechanisms in Angraecum arachnites (Orchidaceae) in a guild of long-tongued hawk-moths (Sphingidae) in Madagascar. Biological Journal of the Linnean Society 26: 1-19. DOI: http://dx.doi.org/10.1111/j.1095-8312.1985.tb01549.x
Nilsson, L. A. & E. Rabakonandrianina. 1988. Hawk-moth scale analysis and pollination specialization in the epilithic Malagasy endemic Aerangis ellisii (Reichenb. fil.) Schltr. (Orchidaceae). Botanical Journal of the Linnean Society 97: 49-62. DOI: http://dx.doi.org/10.1111/j.1095-8339.1988.tb01686.x
Ollerton, J.; S. D. Johnson, L. Cranmer & S. Kellie. 2003. The pollination ecology of an assemblage of grassland asclepiads in South Africa. Annals of Botany 92: 807-834. DOI: http://dx.doi.org/10.1093/aob/mcg206
Parachnowitsch, A. L.; R. A., Raguso & A. Kessler. 2012. Phenotypic selection to increase floral scent emission, but not flower size or colour in bee-pollinated Penstemon digitalis. New Phytologist 195: 667-675. DOI: http://dx.doi.org/10.1111/j.1469-8137.2012.04188.x
Pauw, A. 2006. Floral syndromes accurately predict pollination by a specialized oil-collecting bee (Rediviva peringueyi, Melittidae) in a guild of South African orchids (Coryciinae). American Journal of Botany 93: 917-926. DOI: http://dx.doi.org/10.3732/ajb.93.6.917
Raguso, R. A.; B. O. Schlumpberger, R. L. Kaczorowski & T. P.Holtsford. 2006. Phylogenetic fragrance patterns in Nicotiana sections Alatae and Suaveolentes. Phytochemistry 67: 1931-1942. DOI: http://dx.doi.org/10.1016/j.phytochem.2006.05.038
R Core Team. [consulta: diciembre 2013]. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, http://www.R-project.org/
Robertson, J. L. & R. Wyatt. 1990. Evidence for pollination ecotypes in the yellow-fringed orchid, Platanthera ciliaris. Evolution 44: 121-133. DOI: http://dx.doi.org/10.2307/2409528
Rodríguez-Gironés, M. A. & L. Santamaría. 2006. Models of optimal foraging and resource partitioning: deep corollas for long tongues. Behavioral Ecology 17: 905-910. DOI: http://dx.doi.org/10.1093/beheco/arl024
Rodríguez-Gironés, M. A. & L. Santamaría. 2007. Resource competition, character displacement, and the evolution of deep corolla tubes. American Naturalist 170: 455-464. DOI: http://dx.doi.org/10.1086/520121
Schlumpberger, B. O.; A. A. Cocucci, M. Moré, A. N. Sérsic & R. A. Raguso. 2009. Extreme variation in floral characters and its consequences for pollinator attraction among populations of an Andean cactus. Annals of Botany 103:1489-1500. DOI: http://dx.doi.org/10.1093/aob/mcp075
Silberbauer-Gottsberger, I. S. & G. Gottsberger. 1975. Über sphingophile Angiospermen Brasiliens. Plant Systematics and Evolution 123: 157-184. DOI: http://dx.doi.org/10.1007/BF00989402
Singer, R. B. & A. A. Cocucci. 1997. Eye attached hemipollinaria in the hawkmoth and settling moth pollination of Habenaria (Orchidaceae): A study on functional morphology in five species from subtropical South America. Botanica Acta 110: 328-337. DOI: http://dx.doi.org/10.1111/j.1438-8677.1997.tb00648.x
Stebbins, G. L. 1970. Adaptive radiation of reproductive characteristics in angiosperms. I. Pollination mechanisms. Annual Review of Ecology and Systematics 1: 307-326. DOI: http://dx.doi.org/10.1146/annurev.es.01.110170.001515
Thiers, B. [permanentemente actualizado, consulta 2014]. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium, http://sweetgum.nybg.org/ih/
Vogel, S. 1954. Blütenbiologische Typen als Elemente der Sippengliederung. Botanische Studien 1: 1-338.
Wasserthal, L. T. 1997. The pollinators of the Malagasy star orchids Angraecum sesquipedale, A. sororium and A. compactum and the evolution of extremely long spurs by pollinator shift. Botanica Acta 110: 343-359. DOI: http://dx.doi.org/10.1111/j.1438-8677.1997.tb00650.x
Waterman, R. J.; M. I. Bidartondo, J. Stofberg, J. K. Combs, G. Gebauer, V. Savolainen, T. G. Barraclough & A. Pauw. 2011. The effects of above- and belowground mutualisms on orchid speciation and coexistence. American Naturalist 177: E54–E68. DOI: http://dx.doi.org/10.1086/657955
Whitall, J. B. & S. A. Hodges. 2007. Pollinator shifts drive increasingly long nectar spurs in columbine flowers. Nature 447: 706-710. DOI: http://dx.doi.org/10.1038/nature05857
Zar, J. H. 2010. Biostatistical Analysis, 5th edition. New Jersey: Prentice Hall Inc.
Zuloaga, F. O. & O. Morrone. [permanentemente actualizada, consulta: febrero 2014]. Flora del Cono Sur: Catálogo de las plantas vasculares. Buenos Aires, Argentina, http://www2.darwin.edu.ar/Proyectos/FloraArgentina/FA.asp.
Additional Files
Published
How to Cite
Issue
Section
License

Starting on 2012, Darwiniana Nueva Serie uses Licencia Creative Commons Atribución-NoComercial 2.5 Argentina .