Microfungal composition in an Astelia-Donatia cushion peatland in Tierra del Fuego, Argentina

Authors

  • Noelia I. Paredes Centro Austral de Investigaciones Científicas (CONICET), Ushuaia.
  • Veronica F. Consolo Instituto de Investigaciones en Biodiversidad y Biotecnología (CONICET), Fundación para Investigaciones Biológicas Aplicadas, Mar del Plata.
  • Veronica A. Pancotto Centro Austral de Investigaciones Científicas (CONICET), Ushuaia.
  • Christian Fritz Experimental Plant Ecology, Radboud University, Nijmegen.
  • Marcelo D. Barrera Laboratorio de Investigación en Sistemas Ecológicos y Ambientales, Universidad Nacional de La Plata, La Plata.
  • Angélica M. Arambarri Instituto de Botánica Carlos Spegazzini, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata.
  • Graciela L. Salerno Instituto de Investigaciones en Biodiversidad y Biotecnología (CONICET), Fundación para Investigaciones Biológicas Aplicadas, Mar del Plata.

DOI:

https://doi.org/10.14522/darwiniana.2014.21.566

Keywords:

Astelia-Donatia, diversity, fungal community, PCR- RFLP, peatland.

Abstract

Southern Hemisphere peatlands store substantial amounts of soil carbon. Despite their importance in the global carbon cycle, little is known about decomposition processes and the associated fungal diversity. The present study describes the composition of fungal assemblage in two depths from a cushion peatland of predominating Astelia (Asteliaceae) and Donatia (Donatiaceae) species in Moat, Tierra del Fuego. From 48 samples processed, we obtained 338 isolates. Using different culturing methodologies, through direct and microscopic observation and using molecular methods we identified 38 fungal species and 18 genera of Ascomycetes and Zygomycetes. Isolates belonging to Ascomycetes were the most abundant, with dominance of Penicillium and Trichoderma. We described fungal composition and compared species diversity and evenness across two dephts. No differences in the diversity index and evenness were found between depths. The studied peat is an ecosystem that has a great diversity of filamentous fungal species, some of which are described in other peatlands worldwide.

References

Allison, S. & K. Treseder. 2008. Warming and drying suppress microbial activity and carbon cycling in boreal forest soils. Global Change Biology 14: 2898-2909. DOI: http://dx.doi.org/10.1111/j.1365-2486.2008.01716.x

Andersen, R.; A. J. Francez & L. Rochefort. 2006. The physicochemical and microbiological status of a restored bog in Québec: Identification of relevant criteria to monitor success. Soil Biology & Biochemistry 38: 1375-1387. DOI: http://dx.doi.org/10.1016/j.soilbio.2005.10.012

Anderson, I. C. & J. W. G. Cairney. 2004. Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environmental Microbiology 6: 769-779. DOI: http://dx.doi.org/10.1111/j.1462-2920.2004.00675.x

Artz, R. R. E.; I. C. Anderson, S. J. Chapman, A. Hagn, M. Schloter, J. Potts & C. D. Campbell. 2007. Changes in fungal community composition in response to vegetational succession during natural regeneration of cutover peatlands. Microbial Ecology 54: 508-522. DOI: http://dx.doi.org/10.1007/s00248-007-9220-7

Basiliko, N.; C. Blodau, C. Roehm, P. Bengston & T. R. Moore. 2007. Regulation of decomposition and methane dynamics across natural commercially mined and restored northern peatlands. Ecosystems 10: 1148-1165. DOI: http://dx.doi.org/10.1007/s10021-007-9083-2

Basiliko, N.; J. B. Yavitt, P. Dees & S. M. Merkel. 2003. Methane biogeochemistry and methanogen communities in two northern peatland ecosystems, New York State. Geomicrobiology Journal 20: 563-577. DOI: http://dx.doi.org/10.1080/713851165

Baumann, M. A. 2006. Water flow, spatial patterns and hydrological self-regulation of a raised bog in Tierra del Fuego (Argentina). Ph D diss. Ernst-Moritz-Arndt University Greifswald.

Blodau, C.; N. Basiliko & T. R. Moore. 2004. Carbon turnover in peat-land mesocosms exposed to different water table levels. Biogeochemistry 67: 331-351. DOI: http://dx.doi.org/10.1023/B:BIOG.0000015788.30164.e2

Bragazza, L.; C. Siffi, P. Iacumin & R. Gerdol. 2007. Mass loss and nutrient release during litter decay in peatland: The role of microbial adaptability to litter chemistry. Soil Biology & Biochemistry 39: 257-267. DOI: http://dx.doi.org/10.1016/j.soilbio.2006.07.014

Carmichael, J. W.; W. B. Kendrick, I. L. Conners & L. Sigler. 1980. Genera of Hyphomycetes. Edmonton: University of Alberta Press.

Chen, Y.; M. G. Dumont, N. P. McNamra, P. M. Chamberlain, L. Bodrossy, N. Strails-Pavese & J. C. Murrel. 2008. Diversity of the active methanotrophic community in acidic peatlands as assessed by mRNA and SIP-PLFA analyses. Environmental Microbiology 10: 446-459. DOI: http://dx.doi.org/10.1111/j.1462-2920.2007.01466.x

Clymo, R. S. 1984. The limits to peat bog growth. Philosophical Transactions of the Royal Society Biological Sciences 303: 605-654. DOI: http://dx.doi.org/10.1098/rstb.1984.0002

Domsch, K. H.; W. Gams & T. H. Anderson. 1980. Compendium of soil fungi. Vol. 1. London: Academic Press.

Dooley, M. J. & C. H. Dickinson. 1970. Microbiology of cut-away peat II. The ecology of fungi in certain habitats. Plant Soil 32: 454-446. DOI: http://dx.doi.org/10.1007/BF01372883

Ellis, M. B. 1971. Dematiaceous Hyphomycetes. Kew: Commonwealth Mycological Institute.

Ellis, M. B. 1976. More Dematiaceous Hyphomycetes. Kew: Commonwealth Mycological Institute.

Fierer, N. & R. B. Jackson. 2006. The diversity and biogeography of soil bacterial communities. Proceedings of the Natural Academy of Sciences 103: 626-631. DOI: http://dx.doi.org/10.1073/pnas.0507535103

Fritz, C. 2012. Limits of Sphagnum bog growth in the Southern Hemisphere. Diploma thesis, Radboud University.

Fritz, C.; V. A. Pancotto, J. T. Elzenga, E. J. W. Visser, A. P. Grootjans, A. Pol, R. Iturraspe, J. G. M. Roelofs & A. J. P. Smolders. 2011. Zero methane emission bogs: extreme rhizosphere oxygenation by cushion plants in Patagonia. New Phytology 190: 398-408. DOI: http://dx.doi.org/10.1111/j.1469-8137.2010.03604.x

Frokling, S. E.; J. L. Bubier, T. R. Moore, T. Ball, L. M. Bellisario, A. Bhardwaj, P. Carroll, P. M. Crill, P. M. Lafleur, J. H. McCaughey, N. T. Roulet, A. E. Suyker, S. B. Verma, J. M. Waddington & G. J. Whiting. 1998. Relationship between ecosystem productivity and photosyntetically active radiation for northern peatlands. Global Biogeochemimal Cycles 12: 115-126. DOI: http://dx.doi.org/10.1029/97GB03367

Gamundí, I. J. & V. Amos. 2007. Exploraciones micológicas en Tierra del Fuego. Boletín de la Sociedad Argentina de Botánica 42: 131-148.

Gebser, R. 2008. Ecological studies on the vegetation of the Moat cushion peatland in Tierra del Fuego, Argentina. MSc Thesis, University of Greifswald.

Gilbert, D. & E. A. D. Mitchell. 2006. Microbial diversity in Sphagnum peatlands, en I. P. Martini, A. Martínez Cortizas & W. Chesworth (eds.), Peatlands: Evolution and records of environmental and climate change, pp. 287-318. Amsterdam-Oxford: Elsevier.

Giri, B.; P. Huong Giang, R. Kumari, R. Prassad & A. Varma. 2005. Microbial diversity in soils. Soil Biology 3: 19-55. DOI: http://dx.doi.org/10.1007/3-540-26609-7_2

Godeas, A. M. 1983. Estudios cuali-cuantitativos de los hongos del suelo de Nothofagus dombeyi. Ciencia del suelo 1: 21-31.

Godeas, A. M. & A. M. Arambarri. 2007. Hifomicetes lignícolas de Tierra del Fuego (Fungi, Fungi Imperfecti, Hyphomycetales). Boletín de la Sociedad Argentina de Botánica 42: 1-2.

Horton, T. R. & T. D. Bruns. 2001. The molecular revolution in ectomycorrhizal ecology: peeking into the black-box. Molecular Ecology 10: 1855-1871. DOI: http://dx.doi.org/10.1046/j.0962-1083.2001.01333.x

Jaatinen, K.; H. Fritze, J. Laine & R. Laiho. 2007. Effects of short- and long-term water level draw- down on the populations and activity of aerobic decomposers in a boreal peatland. Global Change Biology 13: 491-510. DOI: http://dx.doi.org/10.1111/j.1365-2486.2006.01312.x

Kamal, S. A. & A. Varma. 2008. Peatland Microbiology, en P. Dion & C. Nautiyal (eds.) Microbiology of Extreme Soils, pp. 177-203. Berlin-Heidelberg: Springer.

Khalid, M.; W. Yang, N. Kishear, Z. Rajput & A. Arizo. 2006. Study of cellulolytic soil fungi and two nova species and new medium. Journal of Zhejiang University Science 7: 459-466. DOI: http://dx.doi.org/10.1631/jzus.2006.B0459

Killham, K. 1994. Soil Ecology. Cambridge: Cambridge University Press.

Kip, N.; C. Fritz, E. Langelaan, Y. Pan, L. Bodrossy, V. A. Pancotto, M. S. M. Jetten, A. J. M. Smolders & H. J. M den Camp. 2012. Methanotrophic activity and diversity in different Sphagnum magellanicum dominated peat bog habitats in Tierra del Fuego. Biogeosciences 9: 47-55. DOI: http://dx.doi.org/10.5194/bg-9-47-2012

Koesnandar, P. S.; D. Nurani & E. Wahyono. 2006. Government role on research and application of technology for peatland utilization. National Seminar on Peatlands and their problems, Pontianak: University of Tnajungpura.

Kovach, W. L. 1999. MVSP-A Multivariate Statistical Package for Windows, Version 3.1. Pentraeth: Kovach Computing Services.

Küster, E. 1963. Influence of peat substances on the metabolism of fungi. Pure and Applied Chemistry 4: 611-616.

Lin, X.; S. Green, M. M. Tfaily, O. Prakash, K. T. Konstantinidis, J. E. Corbett, J. P. Chanton, W. T. Cooper & J. E. Kostka. 2012. Microbial community structure and activity linked to contrasting biogeochemical gradients in bog and fen environments of the Glacial Lake Agassiz Peatland. Applied and Environmental Microbiology 78: 7023-7031. DOI: http://dx.doi.org/10.1128/AEM.01750-12

Magurran, A. E. 1988. Ecological diversity and its measurement. New Jersey: Princeton University Press. DOI: http://dx.doi.org/10.1007/978-94-015-7358-0

Malvárez, A. I.; P. Kandus & A. Carbajo. 2004. Distribución regional de los turbales en Patagonia (Argentina y Chile), en D. E. Blanco & V. M. de la Balze (eds.), Los turbales de la Patagonia. Bases para su inventario y la conservación de la biodiversidad, publicación nº 19, pp. 22-29. Buenos Aires: Wetlands International-América del Sur.

Moore, D. M. 1983. Flora of Tierra del Fuego. Nelson-Oswestry: Lubrecht & Cramer, Ltd.

Moore, T. R. & N. Basiliko. 2006. Decomposition in boreal peatlands, en R. K. Wieder & D. H. Vitt (eds.), Boreal peatland ecosystems, pp 125-143. Berlin: Springer.

Murray, M. G. & W. F. Thompson. 1980. Rapid isolation of high molecular weight plant DNA. Nucleic Acid Research 8: 4321-4325. DOI: http://dx.doi.org/10.1093/nar/8.19.4321

Nakasone, K.; S. Peterson & S. Jong. 2004. Preservation and distribution of fungal cultures, en G.M. Mueller, G. F. Bills & M. Foster (eds.), Biodiversity of fungi. Inventory and monitoring methods, pp. 37-47 Amsterdam: Elsevier Academic Press.

Pancotto, V. A.; O. E. Sala, M. Cabello, N. I. Lopez, T. M. Robson, C. Ballaré, M. Caldwell & A. Scopel. 2003. Solar UV-B decreases decomposition in herbaceous plant litter in Tierra del Fuego, Argentina: potential role of an altered decomposer community. Global Change Biology 9: 1465-1474. DOI: http://dx.doi.org/10.1046/j.1365-2486.2003.00667.x

Peltoniemi, K.; H. Fritze & R. Laiho. 2009. Response of fungal and actinobacterial communities to water-level drawdown in boreal peatland sites. Soil Biology & Biochemistry 41: 1902-1914. DOI: http://dx.doi.org/10.1016/j.soilbio.2009.06.018

Pisano, E. 1983. The Magellanic tundra complex, en A. J. P. Gore (ed.), Mires: swamp, bog, fen and moor, vol. 2, pp. 295-329. Amsterdam: Elsevier.

Preston, M. D.; K. A. Smemo, J. W. McLaughlin & N. Basiliko. 2012. Peatland microbial communities and decomposition processes in the James Bay Lowlands, Canada. Frontiers in Microbiology 3: 1-15. DOI: http://dx.doi.org/10.3389/fmicb.2012.00070

Ramírez, C. & T. Martínez. 1982. Manual and atlas of the Penicillia. Amsterdam-New York-Oxford: Elsevier Biomedical Press.

Repečkienė, J.; Jukonienė, I & O. Salina. 2012. Cellulose-decomposing fungi in peatlands occupied by invasive moss Campylopus introflexus. Botanica Lithuanica 18:46-57. DOI: http://dx.doi.org/10.2478/v10279-012-0007-5

Robson, T. M.; V. A. Pancotto, C. L. Ballaré, O. E. Sala, A. L. Scopel & M. M. Caldwell. 2004. Reduction of solar UV-B mediates changes in the Sphagnum capitulum microenvironment and the peatland microfungal community. Oecologia 140: 480-490. DOI: http://dx.doi.org/10.1007/s00442-004-1600-9

Roig, C. & L. Collado. 2004. Moat, provincia de Tierra del Fuego. Anexo II-G, en D. E. Blanco & V. M. de la Balze (eds.), Los Turbales de la Patagonia. Bases para su inventario y la conservación de su biodiversidad, publicación nº 19, pp. 66-78. Buenos Aires: Wetlands International-América del Sur.

Rousk, J.; E. Baath, P. C. Brookes, C. L. Lauber, C. Lozupone, J. G. Caporaso, R. Knight & N. Fierer. 2010. Soil bacterial and fungal communities across a pH gradient in an arable soil. ISME Journal 4: 1340-1351. DOI: http://dx.doi.org/10.1038/ismej.2010.58

Searles, P. S.; B. R. Kropp, S. D. Flint & M. M. Caldwell. 2001. Influence of solar UV-B radiation on peatland microbial communities of southern Argentina. New Phytologist 152: 213-221. DOI: http://dx.doi.org/10.1046/j.0028-646X.2001.00254.x

Sizova, M. V.; N. S. Panikov, T. P. Tourova & P. W. Flanagan. 2003. Isolation and characterization of oligotrophic acido-tolerant methanogenic consortia from a Sphagnum peat bog. FEMS Microbiology Ecology 45: 301-315. DOI: http://dx.doi.org/10.1016/S0168-6496(03)00165-X

Thormann, M. N. 2005. Diversity and function of fungi in peatlands: a carbon cycling perspective. Canadian Journal of Soil Science 86: 281-293. DOI: http://dx.doi.org/10.4141/S05-082

Thormann, M. N. 2006. The role of fungi in decomposition dynamics in peatlands, en R. K. Wieder & H. D. Vitt (eds.), Boreal Peatland Ecosystems, pp. 101-123. Berlin: Springer-Verlag.

Thormann, M. N. 2011. In vitro decomposition of Sphagnum-derived acrotelm and mesotelm peat by indigenous and alien basidiomycetous fungi. Mires and Peats 8: 1-12.

Thormann, M. N.; R. S. Currah & S. E. Bayley. 2003. Succession of microfungal assemblages in decomposing peatland plants. Plant Soil 250: 323-333. DOI: http://dx.doi.org/10.1023/A:1022845604385

Thormann, M. N.; R. S. Currah & S. E. Bayley. 2004. Patterns of distribution of microfungi in decomposing bogs and fen plants. Canadian Journal of Botany 82: 710-720. DOI: http://dx.doi.org/10.1139/b04-025

Thormann, M. N. & A. V. Rice. 2007. Fungi from peatlands. Fungal Diversity 24: 241-299.

Viaud, M.; A. Pasquier & Y. Brygoo. 2000. Diversity of soil fungi studied by PCR-RFLP of ITS. Mycological Research 104: 1027-1032. DOI: http://dx.doi.org/10.1017/S0953756200002835

Watrud, L. S; K. Martin, K. K. Donegan, J. K. Stone & C. G. Coleman. 2006. Comparison of taxonomic, colony morphotype and PCR-RFLP methods to characterize microfungal diversity. Mycologia 98: 384-392. DOI: http://dx.doi.org/10.3852/mycologia.98.3.384

White, T. M.; T. Bruns, S. Lee & J. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA for phylogenetics, en M. A. Innis, D. H. Gelfand, J. J. Sninsky & T. J. White (eds), PCR protocols: a guide to methods and applications, pp 315-321. San Diego: Academic Press.

Published

31-07-2014

How to Cite

Paredes, N. I., Consolo, V. F., Pancotto, V. A., Fritz, C., Barrera, M. D., Arambarri, A. M., & Salerno, G. L. (2014). Microfungal composition in an Astelia-Donatia cushion peatland in Tierra del Fuego, Argentina. Darwiniana, Nueva Serie, 2(1), 112–124. https://doi.org/10.14522/darwiniana.2014.21.566

Issue

Section

Ecology and Phytogeography